상위 질문
타임라인
채팅
관점

르베그 덮개 차원

위키백과, 무료 백과사전

Remove ads

일반위상수학에서 르베그 덮개 차원(-次元, 영어: Lebesgue covering dimension) 또는 르베그 피복 차원(-被覆次元) 또는 위상적 차원(영어: topological dimension)은 위상 공간을 얼마나 ‘효율적으로’ 덮을 수 있는지를 측정하는 정수 값 불변량이다.

정의

위상 공간 르베그 덮개 차원 는 다음 조건을 만족시키는 최소의 정수 이다.

  • 임의의 유한 열린 덮개 에 대하여, 의 열린 세분 가 존재한다.

만약 위 조건을 만족시키는 정수가 없다면, 로 정의한다. 위 정의에서, “유한 열린 덮개”를 “국소 유한 열린 덮개”로 대체하여도 원래의 정의와 동치이다.[1]:Theorem 1

Remove ads

성질

요약
관점

단체 복합체의 경우, 르베그 덮개 차원과 아핀 차원은 일치한다. (르베그 덮개 정리)

임의의 위상 공간의 르베그 덮개 차원은 큰 귀납적 차원보다 적거나 같다.

정규 공간 에 대하여, 다음 두 조건이 서로 동치이다.

  • 르베그 덮개 차원
  • 의 임의의 닫힌 집합 연속 함수 에 대하여, 에 대한 확장 이 존재한다. (초구)

위상 공간 부분 집합 에 대하여, 만약 닫힌집합이거나,[2]:11, Proposition 2.11 완전 정규 공간이라면, 다음이 성립한다.

정규 공간 부분 집합 에 대하여, 만약 라면, 다음이 성립한다.[2]:25, Proposition 4.8 (르베그 덮개 차원에 대한 우리손 부등식)

위상 공간 가 다음 조건들 가운데 하나를 만족시킨다면, 부등식

이 성립한다.

다음 조건은 두 번째 조건을 함의하므로, 위 부등식을 함의한다.

다음 조건은 세 번째 조건을 함의하므로, 부등식을 함의한다.

정규 하우스도르프 공간 와 그 스톤-체흐 콤팩트화의 르베그 덮개 차원은 일치한다.[3]:182, Exercise 3.1.J

Remove ads

차원 유클리드 공간 의 르베그 덮개 차원은 이다. 보다 일반적으로, 임의의 차원 다양체의 르베그 덮개 차원은 이다.

공집합이 아닌 이산 공간비이산 공간의 르베그 덮개 차원은 0이다.

르베그 덮개 차원이 인 공간은 공집합밖에 없다.

조르겐프라이 직선 의 르베그 덮개 차원은 0이다. 그러나 조르겐프라이 평면 의 르베그 덮개 차원은 이다.[4]:2, Theorem 1

역사

앙리 르베그의 연구 결과에 바탕하여 체코수학자 에두아르트 체흐가 처음으로 공식적으로 도입하였다.

각주

외부 링크

같이 보기

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads