상위 질문
타임라인
채팅
관점

미타그레플레르 정리

위키백과, 무료 백과사전

Remove ads

복소해석학에서 미타그레플레르 정리(-定理, 영어: Mittag-Leffler's theorem)는 유리형 함수에 관한 정리이다. 스웨덴의 수학자 예스타 미타그레플레르가 제시하였다. 바이어슈트라스의 곱 정리와 밀접한 관련이 있다.

공식화

요약
관점

미타그레플레르 정리는 일반적으로 다음과 같이 쓸 수 있다.[1][2]

  • 이 무한대로 발산하는 임의의 수열, 이 임의의 자연수열, 이 n에 대한 임의 수열들이며 모든 n에 대해 이 0이 아니라 하자.
  • 그러면, 각 위수극점이 되고 제거된 근방에서 로랑 급수의 주부분이 유리형 함수가 존재한다.
Remove ads

복소다양체에서의 미타그레플레르 정리

요약
관점

복소다양체라고 하자. 그 위에 정칙 함수의 층이며, 유리형 함수의 층이라고 하자. 그렇다면, 층의 짧은 완전열

이 존재한다. 이로부터, 층 코호몰로지긴 완전열

이 존재한다. 미타그레플레르 정리는 가 어떤 경우에 전사 함수인지를 나타내는 정리다. 이는 인 경우에만 가능한 것을 알 수 있다. 특히, 슈타인 다양체일 경우 카르탕 정리에 따라서 이므로, 항상 미타그레플레르 정리가 성립한다.

Remove ads

같이 보기

각주

참고 문헌

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads