Електричен капацитет
From Wikipedia, the free encyclopedia
Remove ads
'Капацитетот' е односот на промената на електричниот полнеж во системот со соодветната промена на неговиот електричен потенцијал. Постојат две тесно поврзани сродства за капацитетот: само капацитет и меѓусебен капацитет . Секој објект што може да биде електрично наполнет, покажува само капацитет . Материјал со голема само-капацитивност има повеќе електрично полнење при даден напон од оној со ниска капацитивност. Идејата за меѓусебен капацитет е особено важна за разбирање на операциите на кондензатор, една од трите елементарни линеарни електронски компоненти (заедно со отпорници и намотки).
Капацитетот е функција само на геометријата на дизајнот (на пример, површината на плочите и растојанието меѓу нив) и на диелектрик материјалот помеѓу плочите на кондензаторот. За многу диелектрични материјали, еластичноста, а со тоа и капацитивноста, е независна од потенцијалната разлика помеѓу проводниците и вкупниот полнеж на нив.
Единицата на капацитивност SI е фарад (симбол: F), именувана по англискиот физичар Мајкл Фарадеј. Кондензатор од 1 фарад имаме кога електричен полнеж од 1 кулон, има потенцијална разлика од 1 волт помеѓу неговите плочи. .[1] Реципрочниот капацитет се нарекува еластичност.
Remove ads
Самокапацитивност
Во електричните кола, терминот капацитет е обично кратенка за меѓусебен капацитет помеѓу два соседни спроводници, како што се двете плочи на кондензаторот. Меѓутоа, за изолиран проводник постои и својство наречено "само-капацитивност", што е количина на електрично полнење што мора да се додаде во изолиран проводник за да се подигне нејзиниот електричен потенцијал од една единица (т.е. еден волт, во повеќето системи за мерење).[2] Референтна точка за овој потенцијал теоретски е спроводливост во шуплива сфера, на бесконечен полупречник, со проводник поставен во оваа сфера.
Математички, "само-капацитивност" на проводник е дефиниран од
кад
- q е полнењето што го има проводникот,
- dS е бесконечно мал елемент од областа,
- r е должината од dS до фиксната точка M во рамките на плочата.
Користејќи го овој метод, само-капацитивност на спроводливата сфера со полупречник R е:[3]
Пример вредностите на само-капацитивност се:
- за врвот "плоча" на генераторот на ван де Грааф, обична сфера од 20 cm во полупречник: 22.24 pF,
- планета Земјата: околу 710 μF.[4]
Мешавина од капацитет на намотка понекогаш се нарекува само-капацитивност,[5], но ова е различен феномен. Тоа е всушност меѓусебен капацитет помеѓу поединечните вртења на намотката и е форма на скитник, или паразитски кондензатор. Оваа само- капацитивност е важен фактор при високи честоти: ја менува пречка на намотката и доведува до паралелна резонанца резонанца. Во многу апликации ова е непожелен ефект и поставува граница на горната честота за правилно функционирање на колото.
Remove ads
Заемна капацитивност
Честа форма е паралелната-плоча кондензатор, кој се состои од две проводни плочи изолирани едена од друга, обично со сендвич диелектрични материјали. Во паралелен кондензатор на плочи, капацитетот е многу близу пропорционален на површината на проводничките плочи и обратнопропорционален на растојанието помеѓу одделните плочи.
Ако полнењата на плочите се + q и - q , а V го дава напонот помеѓу плочите, тогаш капацитетот "C" е даден од
што дава напон / струја врска
Историски гледано, фарад се сметал за непријатно голема единица, електрично и физички. Неговите помали единици секогаш се користеле, тоа се микрофарад, нанофарад и пикофарад. Во поново време, технологијата напредуваше така што кондензаторите од 1 фарад и поголем (т.н. "суперкондензатори") може да се конструираат во структура малку поголема од монета батерија. Ваквите кондензатори главно се користат за складирање на енергија за замена на традиционалните батерии.
Енергијата складирана во кондензаторот се пресметува со интеграција на работата W :
Mатрица за капацитет
Горенаведената дискусија е ограничена на случајот на две спроводни плочи, иако на произволна големина и форма. Дефиницијата не се применува кога има повеќе од две наполнети плочи, или кога нето полнењето на двете плочи не е нула. За да се справи со овој случај, Максвел ги претставил своите "коефициенти на потенцијалот". Ако на три (речиси идеални) проводници се даваат полнења , тогаш напонот на проводникот 1 е даден со
и слично за другите напони. Херман фон Хелмхолц и Сер Вилијам Томсон покажаа дека коефициентите на потенцијалот се симетрични, така што , итн. Така системот може да биде опишан со збир на коефициенти познати како "матрица на еластичност" или "реципрочна матрица на капацитивност", која е дефинирана како:
Од ова, меѓусебните капацитети помеѓу два објекти можат да бидат дефинирани[6] со решавање за вкупниот полнеж Q и користејќи .
Бидејќи ниеден вистински уред не располага со совршено еднакви и спротивни полнења на секоја од двете "плочи", тоа е меѓусебната капацитивност што е пријавена на кондензаторите.
Колекцијата на коефициенти е позната како матрица на кондензатор ,[7][8] и е обратна на еластичната матрица.
Remove ads
Кондензатори
Капацитетот на поголемиот дел од кондензаторите што се користат во електронските кола обично е за неколку редови помал од фарад. Најчестите подгрупи на капацитивност што се користат денес се: микро, фарад (μF), нанофарад (nF), пикофарад (pF), и, во микроколата, фемтофарад (fF). Сепак, специјално направените суперкондензатори може да бидат многу поголеми (како стотици фарадови), а паразитските капацитивни елементи може да бидат помали од фемтофарад. Во минатото, алтернативните подединици биле користени во историските електронски книги; "mfd" и "mf" за микрофарад (μF); "mmfd", "mmf", "μμF" за пикофарад (pF); но ретко се користат повеќе.[9][10]
Капацитивноста може да се пресмета ако се познати геометријата на проводниците и диелектричните својства на изолаторот помеѓу проводниците. Квалитативно објаснување за ова може да се даде на следниов начин. Откако ќе се стави позитивен полнеж на проводник, ова полнење создава електрично поле, отфрлајќи било кое друго позитивно полнење кое треба да се додаде кон проводникот; односно, зголемување на потребниот напон. Но, ако во близина има друг проводник со негативен полнеж, електричното поле на позитивниот проводник со одбивање на вториот позитивен полнеж е ослабен (вториот позитивен полнеж исто така ја чувствува привлечната сила на негативното полнење). Значи, поради вториот проводник со негативен полнеж, станува полесно да се стави позитивен полнеж на веќе позитивниот наполнет прв спроводник и обратно; односно потребниот напон е намален.
Како квантитативен пример, разгледај ја капацитивноста на кондензатор конструирана од две паралелни плочи и од областа А одделени со растојание d . Ако d е доволно мал во однос на најмалиот акорд на A , има високо ниво на точност:
каде
- C е капацитивност, во фаради;
- А е површина на преклопување на двете плочи, во квадратни метри;
- εr е релативна статичка променливост (понекогаш наречена диелектрична константа) на материјалот помеѓу плочите (за вакуум, εr = 1);
- ε0 is the електрична константа (ε0 ≈ 8,854⋅10-12 F.m-1); и
- d е одвојување помеѓу плочите, во метри;
Капацитетот е пропорционален на површината на преклопување и обратнопропорционална со одвојувањето помеѓу спроведните листови. Колку се поблиску листовите меѓусебно, толку е поголем капацитетот. Равенката е добра апроксимација ако d е помал во споредба со другите димензии на плочите, така што електричното поле во областа на кондензаторот е рамномерно, а таканареченото 'поле за полнење' околу периферијата обезбедува само мал придонес кон капацитетот. Во CGS единици равенката има форма:[11]
каде "C" во овој случај има единици на должина. Комбинирање на SI-равенката за капацитивност со горенаведената равенка за енергијата складирана во капацитет, за кондензатор со рамна плоча, складирана енергија е:
каде што W е енергијата, во џули; C е капацитивност, во фаради; и V е напонот, во волти.
Remove ads
Спречен капацитет
Било кој два соседни проводници можат да функционираат како кондензатор, иако капацитетот е мал, освен ако проводниците не се блиску на големи растојанија или на голема површина. Овој (честопати несакан) капацитет се нарекува паразитски или "залутан капацитет". Залутаниот капацитет може да дозволи сигналите да истекуваат помеѓу поинаку изолираните кола (ефект наречен преслушување), и може да биде ограничувачки фактор за правилно функционирање на колата на висока честота.
Залутаниот капацитет помеѓу влезот и излезот во колото на засилувачот може да биде проблематичен бидејќи може да формира патека на повратни информации, што може да предизвика нестабилност и паразитски осцилации во засилувачот. Често е погодно за аналитички цели да се замени оваа капацитивност со комбинација на еден влез „заземјување“ на капацитивност и еден излез „заземјување“ на капацитивност; оригиналната конфигурација ( вклучувајќи ја и влез-кон-излезната капацитивност ) често се нарекува пи-конфигурација. Теоремата на Милер може да се искористи за да се изврши оваа замена: таа вели дека ако состојбата на степенот на два јазли е 1/K, тогаш импеданса на Z ги поврзува двата јазли може да се замени со импеданса на Z/(1 − K) помеѓу првиот јазол и земјата и KZ/(K − 1) импеданса помеѓу вториот јазол и земјата. Бидејќи импедансата варира обратно со капацитивноста, капацитетот на јазолот, C, се заменува со капацитивност на KC од влезот на земјата и капацитивноста (K − 1)C/K од излез на Земјата. Кога степенот на влезот-во-излез е многу голем, еквивалентната импеданса на влез-на-земјата е многу мала, додека импедансата излез-на-земја е во суштина еднаква на оригиналната импеданса (влез-излез).
Remove ads
Капацитет на кондензатори со едноставни облици
За да се пресмета капацитетот на систем, се користи разрешената Лапласова равенка ∇2φ = 0 со постојан потенцијал φ на површината на спроводниците. Ова е безначајно кај случаите на висока симетрија. Кај посложените случаи не можат да се користат едноставни функции.
За дводимензионални ситуации аналитичките функции можат да се користат за да се определат различните геометрии споредбено. Погледајте Шварц–Кристофелово мапирање.
Remove ads
Складирање на енергија
Енергијата (мерено во joule и) зачувана во кондензатор е еднаква на работата потребна за да ги притисне полнењата во кондензаторот, т.е. да ја наполните. Размислете, капацитетот на кондензаторот C , држејќи полнеж + q на една плоча и - q од друга страна. Преместувањето на мал елемент на полнење од 'q' 'од една плочка на друга, спротивно на потенцијалната разлика, бара {{работа "d"} {V} =} q / C' '}}} 'W' ':
каде "W" е делот што се мери во џули, "q" е полнежот кој се мери во кулони, а "C" е капацитетот, мерен во фаради.
Енергијата складирана во кондензаторот се пресметува со integrating оваа равенка. Почнувајќи со неоптоварената капацитивност ( q = 0) и движењето на полнењето од една плоча до друга, додека плочките имаат + Q и - Q ' ' е = на бараната работа' 'W' ':
Remove ads
Нанометри системи
Капацитетот на наномасните диелектрични кондензатори како што се квантни точки може да се разликува од конвенционалните формулации на поголемите кондензатори. Особено, разликата во електростатичкиот потенцијал кај електроните во конвенционалните кондензатори е просторно дефинирана и фиксирана од формата и големината на металните електроди, покрај статистички голем број на електрони присутни во конвенционалните кондензатори. Меѓутоа, кај нанокрилните кондензатори, електростатичките потенцијали што ги воочиле електроните се одредуваат според бројот и локациите на сите електрони кои придонесуваат за електронските својства на уредот. Во такви уреди, бројот на електрони може да биде многу мал, меѓутоа, резултирачката просторна распределба на еквипотенцијалните површини во уредот е премногу сложена.
Единечни електронски уреди
Капацитетот на поврзан, или "затворен" единствен електронски уред е двапати поголем од капацитетот на неповрзан, или "отворен", единствен електронски уред.[21] Овој факт може да се следи пофундаментално преку енергијата складирана во еден електронски уред чија интеракција на "директна поларизација" може подеднакво да се подели на интеракцијата на електронот со поларизиран полнеж на самиот уред поради присуството на електронот и количината на потенцијалната енергија потребна за да се формира поларизирано полнење на уредот (интеракцијата на полнежот во диелектричниот материјал на уредот со потенцијалот што се должи на електронот).[22]
Неколку електронски уреди
Деривацијата на "квантната капацитивност" на уредот со неколку електрони го вклучува термодинамичкиот хемиски потенцијал на системот "N" - честички даден од
чии енергетски термини можат да се добијат како решенија на Schr & ouml; со провлекување на равенството. Дефиницијата на капацитетот,
- ,
со потенцијална разлика
може да се примени на уредот со додавање или отстранување на поединечни електрони,
- and .
Потоа
е "квантен капацитет" на уредот.[23]
Овој израз на "квантен капацитет" може да биде напишан како
што се разликува од конвенционалниот израз опишан во воведот, каде што , складираната електростатичка потенцијална енергија,
со фактор 1/2 со .
Меѓутоа, во рамките на чисто класичните електростатички интеракции, појавата на факторот 1/2 е резултат на интеграција во конвенционалната формулација,
што е соодветно бидејќи за системи кои вклучуваат или многу електрони или метални електроди, но во неколку електронски системи, . Интегралот генерално станува сумација. Еден може тривиjјално да ги комбинира изразите на капацитетот и енергијата на електростатичка интеракција,,
- and ,
соодветно, за да се добие,
што е слично на квантната капацитивност. Поригорозната деривација е пријавена во литературата.[24] Особено, за да ги заобиколат математичките предизвици на просторно сложените еквипотенцијални површини во рамките на уредот, просечното електростатичко потенцијално искуство од секој електрон се користи во деривацијата.
Причината за очигледните математички разлики се разбира пофундаментално, бидејќи потенцијалната енергија на изолиран уред (само-капацитивност) е двапати поголема од складираната во "поврзаниот" уред во долната граница N = 1. Како N расте нагоре, .[22] Така, општото изразување на капацитетот е:
.
Во нано-уредите како што се квантните точки, "кондензаторот" е често изолирана или делумно изолирана компонента во уредот. Примарните разлики помеѓу кондензаторите на нанос и макроскопските (конвенционални) кондензатори се бројот на вишокот на електрони (носители на полнење или електрони кои придонесуваат за електронското однесување на уредот) и обликот и големината на металните електроди. Во нано-уреди, нанопроводниците кои се состојат од метални атоми обично не ги покажуваат истите проводни својства како нивните макроскопски или делови на материјал.
Remove ads
Капацитет во електронски и полупроводнички уреди
Во електронските и полупроводничките уреди, транзиентната или честотно-зависна струја меѓу терминалите ги содржи и компонентите за спроводливост и поместување. Струјата на спроводливост е поврзана со носачи на носивост (електрони, дупки, јони, итн.), Додека струјата на поместување е предизвикана од електричното поле со различно време. Транспортот на превозникот е под влијание на електричното поле и од голем број на физички појави - како што се носење на носач и дифузија, заробување, инјектирање, ефекти поврзани со контактот, јонизација на удар, итн. Како резултат на тоа, уредот admittance е зависен од честотата , и едноставна електростатичка формула за капацитет не е применлива. Поопшта дефиниција на капацитетот, опфаќајќи електростатичка формула, е:[25]
каде е приемот на уредот, и е аголна честота.
Во принцип, капацитетот е функција на честота. На високи честоти, капацитетот се приближува кон константна вредност, еднаква на "геометриската" капацитивност, одредена со геометријата на терминалите и диелектричната содржина во уредот. Хартијата на Стивен Лаукс [25] претставува преглед на бројчени техники за пресметка на капацитетот. Особено, капацитетот може да се пресмета со Фуриева трансформација на транзиентна струја како одговор на скаларно напонско возбудување:
Remove ads
Негативна капацитивност во полупроводнички уреди
Обично, капацитивноста во полупроводнички уреди е позитивна. Меѓутоа, во некои уреди и под одредени услови (температура, применливи напони, честота, итн.), Капацитетот може да стане негативен. Немонотонското однесување на транзиентната струја како одговор на чекор-како возбуда е предложено како механизам на негативен капацитет.[26] Негативната капацитивност е демонстрирана и истражена во многу различни типови на полупроводнички уреди.[27]
Поврзано
- Кондензатор
- Квантен капацитет
- Амперов закон
- Гаусов закон
- LCR метар
Наводи
Дополнителна литература
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads