Loading AI tools
natuurkunde Van Wikipedia, de vrije encyclopedie
In de natuurkunde is de impuls of hoeveelheid van beweging (in het Engels momentum, niet te verwarren met het Engelse impulse (stoot)) een grootheid die gerelateerd is aan de snelheid en de massa van een object. Binnen de klassieke mechanica is impuls gedefinieerd als:
dus als het product van de scalaire grootheid massa en de vectoriële grootheid snelheid. De impuls is dus ook een vectorgrootheid, met dezelfde richting als de snelheid.
De eenheid van impuls is (newtonseconde), wat in SI-eenheden neerkomt op .
De impuls is een belangrijke grootheid in de klassieke mechanica: Als er een externe kracht werkt op een systeem, verandert de impuls. Volgens de tweede wet van Newton is:
Als de massa constant blijft, geldt dus:
Wanneer de kracht constant is, neemt de impuls lineair toe in de tijd. Als dit niet het geval is neemt men de integraal van de uitgeoefende kracht in de tijd. De integraal van een kracht F over de tijd van tijdstip a naar tijdstip b is de stoot :
De wet van behoud van impuls kan worden afgeleid uit Newtons axioma's voor de klassieke mechanica: Als er geen externe kracht werkt op een systeem, blijft de totale impuls behouden; De krachten die verschillende massa's in een systeem op elkaar uitoefenen heffen elkaar op volgens het axioma actie = −reactie. Dit principe is bijvoorbeeld van toepassing bij het uitstoten van massa bij een kanon of een raket, bij aantrekking (bijvoorbeeld door gravitatie), en bij afstoting op afstand of bij een botsing van twee objecten/deeltjes (in de natuurkundelessen vaak biljartballen). Neem aan dat twee voorwerpen en tegen elkaar botsen of op een andere manier een kracht op elkaar uitoefenen. Als er verder geen krachten zijn is de kracht op volgens het principe van actie = −reactie tegengesteld gericht aan de kracht op en even groot:
Voor de impuls geldt:
Voor de totale impuls geldt dan:
De totale impuls van het systeem kan niet veranderen tenzij er een externe kracht op werkt. Dit geldt ook als het systeem bestaat uit meer dan twee voorwerpen of zelfs een continuüm.
Er wordt algemeen aangenomen dat de wetten van de natuurkunde invariant zouden moeten zijn voor translatie. Met andere woorden: het moet niet uitmaken of een verschijnsel wordt waargenomen in stilstand of terwijl het met een constante snelheid beweegt. Christiaan Huygens leidde zijn botsingswetten af door eerst een eenvoudige botsing te bekijken waarbij twee biljartballen elkaar met gelijke snelheid raken, en de botsing daarna in gedachten plaats te laten vinden aan boord van varende trekschuiten.
Toen Albert Einstein met eenzelfde soort gedachtenexperiment zijn relativiteitstheorie ontwikkelde, bleek dat de klassieke impuls niet voor verschillende waarnemers behouden kon zijn. Het was daarom nodig de definitie van impuls aan te passen tot een relativistische impuls:
Hierbij is de rustmassa en de lorentzfactor die afhangt van de verhouding tussen de snelheid en de lichtsnelheid in vacuüm. Bij snelheden die klein zijn ten opzichte van de lichtsnelheid is de lorentzfactor vrijwel gelijk aan 1. De definities van klassieke en relativistische impuls komen dan overeen. Maar, wanneer de snelheid in de buurt komt van de lichtsnelheid 'c' neemt de lorentzfactor toe en is de relativistische impuls groter dan de klassieke. De impuls nadert zelfs tot oneindig wanneer de snelheid van het voorwerp de lichtsnelheid nadert. Dit geeft aan waarom de lichtsnelheid nooit gehaald kan worden. Hiervoor is een oneindig grote stoot nodig en dus een kracht die oneindig groot is of oneindig lang werkt.
De relativistische impuls wordt zelfs gebruikt om een relativistische massa te definiëren. Bij deze alternatieve rekenmethode in de relativistische mechanica wordt de regel behouden.
Met behulp van viervectoren ontstaat een nieuwe invariantie. Die geldt niet voor energie en zelfs niet voor massa, maar wel voor impuls. Zie Behoudswet. In de relativistische mechanica is de 4-impuls de viervector
waarin de totale energie in het systeem is en de relativistische impuls gedefinieerd is als:
De lengte van de 4-impuls blijft constant en is gelijk aan :
Massaloze deeltjes zoals fotonen hebben eveneens een impuls. Daarvoor geldt:
waarin E de energie van het foton is. Met deze definitie geldt voor zowel deeltjes met massa als deeltjes zonder massa dat , waarin de lengte van de aangeeft en de lengte van . Massaloze deeltjes bewegen zich altijd met de lichtsnelheid.
De twee bovenstaande beschrijvingen waren redelijk gelijksoortig, in de kwantummechanica ziet de wereld er echter anders uit. Alle meetbare grootheden worden daar voorgesteld door hermitische operatoren. Zo ook de impuls. De operator voor de impuls is (in de positie-representatie):
of in meerdere dimensies
Wanneer met deze operator gewerkt wordt in de kwantummechanica, zijn de uitkomsten van de berekeningen (wanneer toegepast op voor de andere methoden gebruikelijke schaal) overigens wel gelijk aan de bovenstaande formules.
Zie ook Impulsoperator.
Gegeneraliseerde impuls is een term die in de theoretische mechanica een belangrijke rol speelt. In het Lagrangeformalisme is die gedefinieerd als:
waarin een plaatscoördinaat en een snelheidscoördinaat is in een gegeneraliseerd coördinatenstelsel. Het nummer van de vrijheidsgraad wordt met i aangegeven.
In het Hamiltonformalisme zijn en de onafhankelijke gegeneraliseerde coördinaten. Hierin geldt:
Let op! Het Engelse woord impulse heeft dezelfde betekenis als het Nederlandse stoot, niet als impuls. Het Engelse woord voor impuls is momentum, niet te verwarren met het Nederlandse woord moment, dat in het Engels torque heet (en daarmee lijkt op het Nederlandse woord torsie, dat het gevolg kan zijn van een moment).
lineaire/translatie grootheden | ||||||||
Wat meten tijdsintegralen? | 'nabijheid' ('nearness') | 'verheid' ('farness') | ||||||
---|---|---|---|---|---|---|---|---|
Dimensie | L−1 | 1 | L | L2 | ||||
T9 | presrop (Engels) m−1·s9 |
absrop (Engels) m·s9 |
||||||
T8 | presock (Engels) m−1·s8 |
absock (Engels) m·s8 |
||||||
T7 | presop (Engels) m−1·s7 |
absop (Engels) m·s7 |
||||||
T6 | presackle (Engels) m−1·s6 |
absrackle (Engels) m·s6 |
||||||
T5 | presounce (Engels) m−1·s5 |
absounce (Engels) m·s5 |
||||||
T4 | preserk (Engels) m−1·s4 |
abserk (Engels): D m·s4 |
||||||
T3 | preseleration (Engels) m−1·s3 |
abseleration (Engels): C m·s3 |
hoek/rotatie grootheden | |||||
T2 | presity (Engels) m−1·s2 |
absity (Engels): B m·s2 |
Dimensie | 1 | geen (m·m−1) | geen (m2·m−2) | ||
T | presement (Engels) m−1·s |
tijd: t s |
absition/absement (Engels): A m·s |
T | tijd: t s |
|||
1 | placement (Engels) golfgetal m−1 |
afgelegde weg: d plaatsvector: r, s, x afstand: s m |
oppervlakte: A m2 |
1 | hoek: θ rad |
ruimtehoek: Ω rad2, sr |
||
Wat meten tijdsafgeleiden? | 'rasheid' ('swiftness') | |||||||
T−1 | frequentie: f s−1, Hz |
snelheid (scalar): v snelheid (vector): v m·s−1 |
kinematische viscositeit: ν diffusiecoëfficiënt: D specifiek impulsmoment: h m2·s−1 |
T−1 | frequentie: f s−1, Hz |
hoeksnelheid: ω, ω rad·s−1 |
||
T−2 | versnelling: a m·s−2 |
verbrandingswarmte geabsorbeerde dosis: D radioactieve-dosisequivalent m2·s−2, J·kg−1, Gy, Sv |
T−2 | hoekversnelling: α rad·s−2 |
||||
T−3 | ruk: j m·s−3 |
T−3 | hoekruk: ζ rad·s−3 |
|||||
T−4 | jounce/snap (Engels):
s m·s−4 |
|||||||
T−5 | crackle (Engels): c m·s−5 |
|||||||
T−6 | pop (Engels): Po m·s−6 |
|||||||
T−7 | lock (Engels) m·s−7 |
|||||||
T−8 | drop (Engels) m·s−8 |
|||||||
M | lineaire dichtheid: kg·m−1 |
massa: m kg |
ML2 | massatraagheidsmoment: I kg·m2 |
||||
Wat meten tijdsafgeleiden? | 'sterkheid' ('forceness') | |||||||
MT−1 | dynamische viscositeit: η kg·m−1·s−1, N·m−2·s, Pa·s |
impuls: p (momentum), stoot: J, p (impulse) kg·m·s−1, N·s |
actie: 𝒮 actergie: ℵ kg·m2·s−1, N·m·s, J·s |
ML2T−1 | impulsmoment (momentum angularis): L kg·m2·s−1 |
actie: 𝒮 actergie: ℵ kg·m2·s−1, N·m·s, J·s |
||
MT−2 | druk: p mechanische spanning: energiedichtheid: U kg·m−1·s−2, N·m−2, J·m−3, Pa |
oppervlaktespanning: of kg·s−2, N·m−1, J·m−2 |
kracht: F gewicht: Fg ·kg·m·s−2, N |
energie: E arbeid: W warmte: Q kg·m2·s−2, Nm, J |
ML2T−2 | krachtmoment (torque): M, τ kg·m2·s−2, Nm |
energie: E arbeid: W warmte: Q kg·m2·s−2, Nm, J |
|
MT−3 | yank (Engels): Y kg·m·s−3, N·s−1 |
vermogen: P kg·m2·s−3, W |
ML2T−3 | rotatum: P kg·m2·s−3, N·m·s−1 |
vermogen: P kg·m2 ·s−3, W |
|||
MT−4 | tug (Engels): T kg·m·s−4, N·s−2 |
|||||||
MT−5 | snatch (Engels): S kg·m·s−5, N·s−3 |
|||||||
MT−6 | shake (Engels): Sh kg·m·s−6, N·s−4 |
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.