ਕਲਾਸੀਕਲ ਫੀਲਡ ਥਿਊਰੀ

From Wikipedia, the free encyclopedia

Remove ads

ਇੱਕ ਕਲਾਸੀਕਲ ਫੀਲਡ ਸਪੇਸ ਅਤੇ ਸਮੇਂ ਦੇ ਕਿਸੇ ਖੇਤਰ ਤੇ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਗਿਆ ਇੱਕ ਫੰਕਸ਼ਨ ਹੁੰਦਾ ਹੈ। ਦੋ ਭੌਤਿਕੀ ਘਟਨਾਕ੍ਰਮ ਜੋ ਕਲਾਸੀਕਲ ਫੀਲਡਾਂ ਰਾਹੀਂ ਦਰਸਾਏ ਜਾਂਦੇ ਹਨ, ਨਿਊਟੋਨੀਅਨ ਗਰੈਵੀਟੇਸ਼ਨ (ਨਿਊਟੋਨੀਅਨ ਗਰੈਵੀਟੇਸ਼ਨਲ ਫੀਲਡ g(x, t) ਰਾਹੀਂ ਪ੍ਰਸਤੁਤ), ਅਤੇ ਕਲਾਸੀਕਲ ਇਲੈਕਟ੍ਰੋਮੈਗਨੈਟਿਜ਼ਮ (ਇਲੈਕਟ੍ਰਿਕ ਅਤੇ ਮੈਗਨੈਟਿਕ ਫੀਲਡ E(x, t) ਅਤੇ B(x, t) ਰਾਹੀਂ ਪ੍ਰਸਤੁਤ) ਹਨ। ਕਿਉਂਕਿ ਅਜਿਹੀਆਂ ਫੀਲਡਾਂ ਸਿਧਾਂਤ ਵਿੱਚ ਸਪੇਸ ਵਿੱਚ ਹਰੇਕ ਬਿੰਦੂ ਤੇ ਵੱਖਰਾ ਮੁੱਲ ਲੈ ਸਕਦੀਆਂ ਹਨ, ਇਹਨਾਂ ਨੂੰ ਅਜ਼ਾਦੀ ਦੀ ਅਨੰਤ ਡਿਗਰੀ ਵਾਲੀਆਂ ਕਿਹਾ ਜਾਂਦਾ ਹੈ।

ਕਲਾਸੀਕਲ ਫੀਲਡ ਥਿਊਰੀ, ਫੇਰ ਵੀ, ਅਜਿਹੇ ਭੌਤਿਕੀ ਘਟਨਾਕ੍ਰਮ ਦੇ ਕੁਆਂਟਮ-ਮਕੈਨੀਕਲ ਪਹਿਲੂਆਂ ਲਈ ਜ਼ਿੰਮੇਵਾਰ ਨਹੀਂ ਹੈ। ਉਦਾਹਰਨ ਵਜੋਂ, ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਤੋਂ ਇਹ ਜਾਣਿਆ ਗਿਆ ਹੈ ਕਿ ਇਲੈਕਟ੍ਰੋਮੈਗਨੈਟਿਜ਼ਮ ਦੇ ਕੁੱਝ ਪਹਿਲੂਆਂ ਵਿੱਚ ਅਨਿਰੰਤਰ ਕਣ ਫੋਟੌਨ ਸ਼ਾਮਲ ਹਨ- ਨਿਰੰਤਰ ਫੀਲਡਾਂ ਸ਼ਾਮਲ ਨਹੀਂ ਹਨ। ਕੁਆਂਟਮ ਫੀਲਡ ਥਿਊਰੀ ਦਾ ਕੰਮ ਇੱਕ ਫੀਲਡ ਲਿਖਣਾ ਹੈ ਜੋ, ਕਲਾਸੀਕਲ ਫੀਲਡ ਵਾਂਗ, ਸਪੇਸ ਅਤੇ ਸਮੇਂ ਤੇ ਪਰਿਭਾਸ਼ਿਤ ਇੱਕ ਫੰਕਸ਼ਨ ਹੈ, ਪਰ ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਦੇ ਨਿਰੀਖਣਾਂ ਦਾ ਝਗੜਾ ਵੀ ਹੱਲ ਕਰਦਾ ਹੈ। ਇਹੀ ਕੁਆਂਟਮ ਫੀਲਡ ਹੈ।

ਇਹ ਤੁਰੰਤ ਸਪਸ਼ਟ ਨਹੀਂ ਹੁੰਦਾ ਕਿ ਅਜਿਹੀ ਕੁਆਂਟਮ ਫੀਲਡ ਕਿਵੇਂ ਲਿਖੀ ਜਾਵੇ, ਕਿਉਂਕਿ ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਦੀ ਬਣਤਰ ਫੀਲਡ ਥਿਊਰੀ ਵਾਂਗ ਨਹੀਂ ਹੈ। ਇਸ ਦੇ ਸਭ ਤੋਂ ਜਿਆਦਾ ਆਮ ਫਾਰਮੂਲੇ ਵਿੱਚ, ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਨਿਰਾਕਾਰ ਚਾਲਕਾਂ (ਪਰਖ-ਯੋਗ) ਦੀ ਥਿਊਰੀ ਹੈ ਜੋ ਇੱਕ ਨਿਰਾਕਾਰ ਅਵਸਥਾ ਸਪੇਸ (ਹਿਲਬਰਟ ਸਪੇਸ) ਤੇ ਕ੍ਰਿਆ ਕਰ ਰਹੇ ਹਨ, ਜਿੱਥੇ ਪਰਖ-ਯੋਗ ਚੀਜਾਂ ਭੌਤਿਕੀ ਤੌਰ 'ਤੇ ਪਰਖ-ਯੋਗ ਮਾਤਰਾਵਾਂ ਨੂੰ ਪ੍ਰਸਤੁਤ ਕਰਦੀਆਂ ਹਨ ਅਤੇ ਅਵਸਥਾ ਸਪੇਸ ਅਧਿਐਨ ਅਧੀਨ ਸਿਸਟਮ ਦੀਆਂ ਸੰਭਵ ਅਵਸਥਾਵਾਂ ਪ੍ਰਸਤੁਤ ਕਰਦੀ ਹੈ। ਉਦਾਹਰਨ ਵਜੋਂ, ਇੱਕ ਸਿੰਗਲ ਕੁਆਂਟਮ ਮਕੈਨੀਕਲ ਕਣ ਦੀ ਗਤੀ ਨਾਲ ਸਬੰਧਤ ਮੁਢਲੀਆਂ ਪਰਖ-ਯੋਗ ਚੀਜਾਂ ਪੌਜੀਟ੍ਰੌਨ ਅਤੇ ਗਤੀ-ਨਾਪ ਚਾਲਕ ਅਤੇ ਹਨ। ਫੀਲਡ ਥਿਊਰੀ, ਇਸ ਤੋਂ ਉਲਟ, x ਨੂੰ ਚਾਲਕ ਦੀ ਜਗਹ ਫੀਲਡ ਸੂਚੀਬੱਧ ਕਰਨ ਦੇ ਤਰੀਕੇ ਵਜੋਂ ਵਰਤਦੀ ਹੈ।

ਇੱਕ ਕੁਆਂਟਮ ਫੀਲਡ ਵਿਕਸਿਤ ਕਰਨ ਦੇ ਦੋ ਆਮ ਤਰੀਕੇ ਹਨ: ਰਸਤਾ ਜੋੜ ਫਾਰਮੂਲਾ ਅਤੇ ਕਾਨੋਨੀਕਲ ਨਿਰਾਧਾਰੀਕਰਨ। ਬਾਦ ਵਾਲਾ ਇਸ ਲੇਖ ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ।

Remove ads

ਲਗਰੇਂਜੀਅਨ ਫਾਰਮੂਲਾ ਬਣਤਰ

ਕੁਆਂਟਮ ਫੀਲਡ ਥਿਊਰੀ ਕਲਾਸੀਕਲ ਫੀਲਡ ਥਿਊਰੀ ਤੋਂ ਲਗਰਾਂਜੀਅਨ ਫਾਰਮੁਲ਼ੇ ਦੀ ਬਣਤਰ ਦੀ ਵਰਤੋ ਕਰਦੀ ਹੈ। ਇਹ ਫਾਰਮੂਲਾ ਬਣਤਰ ਇੱਕ ਖੇਤਰ ਦੇ ਪ੍ਰਭਾਵ ਅਧੀਨ ਇੱਕ ਕਣ ਦੀ ਗਤੀ ਦੇ ਹੱਲ ਲਈ ਪੁਰਾਤਨ ਮਕੈਨੀਕਸ ਵਿੱਚ ਵਰਤੇ ਗਏ ਲਗਰੇਂਜੀਅਨ ਫਾਰਮੂਲੇ ਦੀ ਬਣਤਰ ਸਮਾਨ ਹੈ। ਪੁਰਾਤਨ ਫੀਲਡ ਥਿਊਰੀ ਵਿੱਚ, ਲਗਰੇਂਜੀਅਨ ਸੰਘਣਤਾ ਨੂੰ ਨਾਲ ਲਿਖਿਆ ਜਾਂਦਾ ਹੈ, ਜਿਸ ਵਿੱਚ ਇੱਕ ਫੀਲਡ φ(x,t) ਸ਼ਾਮਲ ਹੈ, ਅਤੇ ਸੰਭਾਵਨਾ ਦੇ ਤੌਰ 'ਤੇ ਇਸ ਦੇ ਪਹਿਲੇ ਡੈਰੀਵੇਟਿਵ (derivatives) (∂φ/∂t and ∇φ) ਹਨ, ਅਤੇ ਫੇਰ ਇਲੁਰ-ਲਗਰੇਂਜ ਸਮੀਕਰਨ ਦੀ ਇੱਕ ਫੀਲਡ-ਸਿਧਾਂਤਕ ਕਿਸਮ ਲਾਗੂ ਹੁੰਦੀ ਹੈ। ਨਿਰਦੇਸ਼ ਅੰਕ (t, x) = (x0, x1, x2, x3) = xμ ਨੂੰ ਲਿਖਦੇ ਹੋਏ, ਈਲੁਰ-ਲਗਰੇਂਜ ਸਮੀਕਰਨ ਦੀ ਇਹ ਕਿਸਮ ਇਹ ਹੈ:

ਜਿੱਥੇ μ ਉੱਤੇ ਜੋੜ ਆਈਨਸਟਾਈਨ ਦੀਆਂ ਧਾਰਨਾਵਾਂ ਮੁਤਾਬਿਕ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

ਇਸ ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨ ਤੇ, ਫੀਲਡ ਦੀ ‘ਗਤੀ ਦੀ ਸਮੀਕਰਨ’ ਤੇ ਪਹੁੰਚਿਆ ਜਾਂਦਾ ਹੈ। ਉਦਾਹਰਨ ਵਜੋਂ, ਜੇਕਰ ਲਗਰੇਂਜੀਅਨ ਸੰਘਣਤਾ ਨਾਲ ਸ਼ੁਰੂ ਕੀਤਾ ਜਾਵੇ ਤਾਂ;

ਅਤੇ ਫੇਰ ਈਲੂਰ-ਲਗਰੇਂਜ ਸਮੀਕਰਨ ਲਾਗੂ ਕਰਨ ਤੇ, ਗਤੀ ਦੀ ਸਮੀਕਰਨ ਬਣਦੀ ਹੈ।

ਇਹ ਸਮੀਕਰਨ ਬ੍ਰਹਿਮੰਡੀ ਗਰੂਤਾਕਰਸ਼ਨ ਦਾ ਨਿਊਟਨ ਦਾ ਸਿਧਾਂਤ ਹੈ, ਜੋ ਗਰੂਤਾਕਰਸ਼ਨ ਸ਼ਕਤੀ φ(t, x) ਅਤੇ ਪੁੰਜ ਸੰਘਣਤਾ (mass density) ρ(t, x) ਦੇ ਸ਼ਬਦਾਂ ਵਿੱਚ ਡਿੱਫਰੈਂਸ਼ੀਅਲ ਰੂਪ ਵਿੱਚ ਲਿਖਿਆ ਗਿਆ ਹੈ। ਨਾਮਕਰਨ ਤੋਂ ਇਲਾਵਾ, ਅਧਿਐਨ ਅਧੀਨ ਫੀਲਡ ਗਰੂਤਾਕਰਸ਼ਨ ਸ਼ਕਤੀ φ ਹੈ, ਗਰੂਤਾਕਰਸ਼ਨ ਫੀਲਡ g ਨਹੀਂ ਹੈ। ਇਸੇਤਰਾਂ, ਜਦੋਂ ਇਲੈਕਟ੍ਰੋਮੇਗਨੈਟਿਜ਼ਮ ਦੇ ਅਧਿਐਨ ਲਈ ਪੁਰਾਤਨ ਫੀਲਡ ਥਿਊਰੀ ਨੂੰ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ, ਦਿਲਚਸਪੀ ਦਾ ਖੇਤਰ ਬਿਜਲਈ-ਚੁੰਬਕਤਾ ਚਾਰ-ਪੁਟੈਂਸ਼ਲ (V/c, A) ਹੁੰਦਾ ਹੈ, ਇਲੈਕਟ੍ਰਿਕ ਫੀਲਡ E ਅਤੇ ਮੈਗਨੈਟਿਕ ਫੀਲਡ B ਨਹੀਂ ਹੁੰਦੀਆਂ।

ਕੁਆਂਟਮ ਫੀਲਡ ਥਿਊਰੀ ਕੁਆਂਟਮ ਫੀਲਡਾਂ ਲਈ ਗਤੀ ਦੀਆਂ ਸਮੀਕਰਨਾਂ ਨਿਰਧਾਰਿਤ ਕਰਨ ਲਈ ਇਸੇ ਲਗਰੇਂਜੀਅਨ ਵਿਧੀ ਨੂੰ ਵਰਤਦੀ ਹੈ। ਗਤੀ ਦੀਆਂ ਇਹ ਸਮੀਕਰਨਾਂ ਫੇਰ ਹੇਠਾਂ ਲਿਖੇ ਕਾਨੋਨੀਕਲ ਨਿਰਧਾਰੀਕਰਨ ਵਿਧੀ ਤੋਂ ਰੂਪਾਂਤਰਨ ਸਬੰਧਾਂ ਰਾਹੀਂ ਪੂਰੀਆਂ ਕੀਤੀਆਂ ਜਾਂਦੀਆਂ ਹਨ, ਇਸ ਤਰ੍ਹਾਂ ਇਹ ਫੀਲਡ ਦੇ ਵਰਤਾਓ ਵਿੱਚ ਕੁਆਂਟਮ ਮਕੈਨੀਕਲ ਪ੍ਰਭਾਵਾਂ ਦਾ ਸਹਿਯੋਗ ਕਰਦੀਆਂ ਹਨ।

Remove ads

ਯੂਨੀਫੀਕੇਸ਼ਨ ਯਤਨ

ਕਾਲੂਜ਼ਾ-ਕਲੇਇਨ ਥਿਊਰੀ ਗਰੈਵੀਟੇਸ਼ਨ ਅਤੇ ਇਲੈਕਟ੍ਰੋਮੈਗਨਟਿਜ਼ਮ ਨੂੰ ਰਲਾਉਣ ਲਈ ਇੱਕ ਪੰਜ-ਅਯਾਮੀ ਸਪੇਸਟਾਈਮ ਅੰਦਰ ਯਤਨ ਕਰਦੀ ਹੈ।

ਇਹ ਵੀ ਦੇਖੋ

  • ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਵੇਵ ਇਕੁਏਸ਼ਨਾਂ
  • ਕੁਆਂਟਮ ਫੀਲਡ ਥਿਊਰੀ
  • ਕਲਾਸੀਕਲ ਯੂਨੀਫਾਈਡ ਫੀਲਡ ਥਿਊਰੀਆਂ
  • ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਵਿੱਚ ਵੇਰੀਏਸ਼ਨਲ ਵਿਧੀਆਂ
  • ਹਿਗਜ਼ ਫੀਲਡ (ਕਲਾਸੀਕਲ)
  • ਲਗ੍ਰਾਂਜੀਅਨ (ਫੀਲਡ ਥਿਊਰੀ)
  • ਹੈਮਿਲਟੋਨੀਅਨ ਫੀਲਡ ਥਿਊਰੀ
  • ਕੋਵੇਰੀਅੰਟ ਹੈਮਿਲਟੋਨੀਅਨ ਫੀਲਡ ਥਿਊਰੀ

ਨੋਟਸ

    ਹਵਾਲੇ

    ਬਾਹਰੀ ਲਿੰਕ

    Loading related searches...

    Wikiwand - on

    Seamless Wikipedia browsing. On steroids.

    Remove ads