Najlepsze pytania
Chronologia
Czat
Perspektywa

Statystyka Fermiego-Diraca

Z Wikipedii, wolnej encyklopedii

Statystyka Fermiego-Diraca
Remove ads

Statystyka Fermiego-Diracastatystyka dotycząca fermionów – cząstek o spinie połówkowym, które obowiązuje zakaz Pauliego. Zgodnie z zakazem Pauliego w danym stanie kwantowym nie może znajdować się więcej niż jeden fermion. Statystyka Fermiego-Diraca oparta jest również na założeniu nierozróżnialności cząstek[1].

Thumb
Oś pozioma: Oś pionowa: Dla zachodzi
Thumb
Porównanie statystyk kwantowych.

Jego nazwa rozkładu pochodzi nazwisk fizyków Enrica Fermiego-Paula Diraca, którzy niezależnie od siebie wyprowadzili tę zależność w 1926 roku[2][3].

Zgodnie z rozkładem Fermiego-Diraca średnia liczba cząstek w niezdegenerowanym stanie energetycznym dana jest przez

gdzie:

– energia tego stanu,
potencjał chemiczny,
stała Boltzmanna,
– temperatura bezwzględna (w skali Kelvina).
Remove ads

Rozkład Fermiego-Diraca – elektrony

Podsumowanie
Perspektywa

Rozkład Fermiego-Diraca opisuje sposób obsadzenia poziomów energetycznych przez elektrony w układzie wieloelektronowym (np. gaz elektronów w metalach i półprzewodnikach).

Zgodnie z zakazem Pauliego, w każdym stanie kwantowym może się znajdować co najwyżej jeden elektron, a każdy poziom energetyczny może być obsadzony przez co najwyżej dwa elektrony o przeciwnych spinach.

W temperaturze większej od zera bezwzględnego prawdopodobieństwo obsadzenia -tego stanu, o energii jest tym mniejsze, im większa jest ta energia. Przy zmniejszaniu prawdopodobieństwo znalezienia elektronu w stanie wzrasta, jednak nie przekracza jedności.

Zależność tę wyraża funkcja rozkładu Fermiego-Diraca:

W temperaturze zera bezwzględnego wprowadza się oznaczenie jest to energia najwyżej obsadzonego stanu (poziom Fermiego) w temperaturze zera bezwzględnego. W tej temperaturze obsadzone są wszystkie stany o energii mniejszej lub równej energii Fermiego a wyższe stany nie są obsadzone.

Dla każdej temperatury zachodzi gdy

Dla takich energii, że rozkład przechodzi w klasyczny rozkład Boltzmanna:

Remove ads

Zobacz też

Przypisy

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads