Top Qs
Linha do tempo
Chat
Contexto

Magnitude aparente

medida aparente de um corpo celeste visto por um observador na Terra Da Wikipédia, a enciclopédia livre

Magnitude aparente
Remove ads

A magnitude aparente (m) é uma medida do brilho de uma estrela ou outro objeto astronômico observado da Terra. A magnitude aparente de um objeto depende de sua luminosidade intrínseca, sua distância da Terra e qualquer extinção da luz do objeto causada pela poeira interestelar ao longo da linha de visão do observador.

Thumb
Asteroide 65 Cybele e duas estrelas, com suas magnitudes marcadas

A palavra magnitude em astronomia, salvo indicação em contrário, geralmente se refere à magnitude aparente de um objeto celeste. A escala de magnitude remonta ao antigo astrônomo romano Ptolemeu, cujo catálogo de estrelas listou estrelas de 1.ª magnitude (mais brilhante) a 6.ª magnitude (mais fraca). A escala moderna foi definida matematicamente de forma a corresponder de perto a esse sistema histórico.

A escala é logarítmica reversa: quanto mais brilhante é um objeto, menor é o seu número de magnitude. Uma diferença de 1.0 em magnitude corresponde a uma taxa de brilho de , ou cerca de 2.512. Por exemplo, uma estrela de magnitude 2.0 é 2.512 vezes mais brilhante que uma estrela de magnitude 3.0, 6.31 vezes mais brilhante que uma estrela de magnitude 4.0 e 100 vezes mais brilhante que uma de magnitude 7.0.

Os objetos astronômicos mais brilhantes têm magnitudes aparentes negativas: por exemplo, Vênus em -4.2 ou Sirius em -1.46. As estrelas mais fracas visíveis a olho nu na noite mais escura têm magnitudes aparentes de cerca de +6.5, embora isso varie dependendo da visão de uma pessoa e da altitude e das condições atmosféricas.[1] As magnitudes aparentes de objetos conhecidos variam desde o Sol em -26.832 até objetos em imagens profundas do Telescópio Espacial Hubble de magnitude +31.5.[2]

A medição da magnitude aparente é chamada de fotometria. As medições fotométricas são feitas nas bandas de comprimento de onda ultravioleta, visível ou infravermelho usando filtros de banda passante padrão pertencentes a sistemas fotométricos, como o sistema UBV ou o sistema Strömgren uvbyβ.

A magnitude absoluta é uma medida da luminosidade intrínseca de um objeto celeste, em vez de seu brilho aparente, e é expressa na mesma escala logarítmica reversa. A magnitude absoluta é definida como a magnitude aparente que uma estrela ou objeto teria se fosse observada a uma distância de 10 parsecs (33 anos-luz; 3.1×1014 quilômetros). Portanto, é de maior uso na astrofísica estelar, pois se refere a uma propriedade de uma estrela, independentemente de quão perto ela esteja da Terra. Mas na astronomia observacional e na observação amadora de estrelas, referências não qualificadas a "magnitude" são entendidas como significando magnitude aparente.

Remove ads

História

Resumir
Perspectiva
Mais informação Visível aoolho humano típico, Magnitude aparente ...

A escala usada para indicar a magnitude tem origem na prática helenística de dividir as estrelas visíveis a olho nu em seis magnitudes. Dizia-se que as estrelas mais brilhantes no céu noturno eram de primeira magnitude (m = 1), enquanto as mais fracas eram de sexta magnitude (m = 6), que é o limite da percepção visual humana (sem o auxílio de um telescópio). Cada grau de magnitude foi considerado o dobro do brilho do grau seguinte (uma escala logarítmica), embora essa proporção fosse subjetiva, pois não existiam fotodetectores. Essa escala um tanto grosseira para o brilho das estrelas foi popularizada por Ptolomeu em seu Almagesto e acredita-se que tenha se originado com Hiparco. Isso não pode ser provado ou refutado porque o catálogo original de estrelas de Hiparco foi perdido. O único texto preservado do próprio Hiparco (um comentário a Arato) documenta claramente que ele não tinha um sistema para descrever o brilho com números: ele sempre usa termos como "grande" ou "pequeno", "brilhante" ou "fraco" ou mesmo descrições como "visível na lua cheia".[6]

Em 1856, Norman Robert Pogson formalizou o sistema definindo uma estrela de primeira magnitude como uma estrela que é 100 vezes mais brilhante que uma estrela de sexta magnitude, estabelecendo assim a escala logarítmica ainda em uso hoje. Isso implica que uma estrela de magnitude m é cerca de 2512 vezes mais brilhante que uma estrela de magnitude m + 1. Esse valor, a quinta raiz de 100, ficou conhecido como Razão de Pogson.[7] O ponto zero da escala de Pogson foi originalmente definido atribuindo a Polaris uma magnitude de exatamente 2. Os astrônomos descobriram mais tarde que Polaris é ligeiramente variável, então eles mudaram para Vega como a estrela de referência padrão, atribuindo o brilho de Vega como a definição de magnitude zero em qualquer comprimento de onda especificado.

Além de pequenas correções, o brilho de Vega ainda serve como a definição de magnitude zero para os comprimentos de onda do visível e do infravermelho próximo, onde sua distribuição de energia espectral (SED) se aproxima da de um corpo negro para uma temperatura de 11000 K. No entanto, com o advento da astronomia infravermelha, foi revelado que a radiação de Vega inclui um excesso infravermelho presumivelmente devido a um disco circunstelar que consiste em poeira em temperaturas quentes (mas muito mais frias que a superfície da estrela). Em comprimentos de onda mais curtos (por exemplo, visíveis), há emissão insignificante de poeira nessas temperaturas. No entanto, para estender adequadamente a escala de magnitude no infravermelho, essa peculiaridade de Vega não deve afetar a definição da escala de magnitude. Portanto, a escala de magnitude foi extrapolada para todos os comprimentos de onda com base na curva de radiação do corpo negro para uma superfície estelar ideal a 11000 K não contaminada pela radiação circunstelar. Com base nisso, a irradiância espectral (geralmente expressa em janskys) para o ponto de magnitude zero, em função do comprimento de onda, pode ser calculada.[8] Pequenos desvios são especificados entre sistemas usando aparelhos de medição desenvolvidos independentemente para que os dados obtidos por diferentes astrônomos possam ser adequadamente comparados, mas de maior importância prática é a definição de magnitude não em um único comprimento de onda, mas aplicando-se à resposta de filtros espectrais padrão usados em fotometria em várias bandas de comprimento de onda.

Mais informação Abertura dotelescópio (mm), Limite de ...

Com os sistemas de magnitude modernos, o brilho em uma faixa muito ampla é especificado de acordo com a definição logarítmica detalhada abaixo, usando essa referência zero. Na prática, tais magnitudes aparentes não excedem 30 (para medições detectáveis). O brilho de Vega é excedido por quatro estrelas no céu noturno em comprimentos de onda visíveis (e mais em comprimentos de onda infravermelhos), bem como pelos planetas brilhantes Vênus, Marte e Júpiter, e estes devem ser descritos por magnitudes negativas. Por exemplo, Sirius, a estrela mais brilhante da esfera celeste, tem uma magnitude de -1,4 no visível. As magnitudes negativas para outros objetos astronômicos muito brilhantes podem ser encontradas na tabela abaixo.

Os astrônomos desenvolveram outros sistemas fotométricos de ponto zero como alternativas ao sistema Vega. O mais amplamente utilizado é o sistema de magnitude AB,[10] no qual os pontos zero fotométricos são baseados em um espectro de referência hipotético com fluxo constante por intervalo de frequência unitário, em vez de usar um espectro estelar ou curva de corpo negro como referência. O ponto zero da magnitude AB é definido de modo que as magnitudes baseadas em AB e Vega de um objeto sejam aproximadamente iguais na banda do filtro V.

Remove ads

Medição

Resumir
Perspectiva

Medição de precisão de magnitude (fotometria) requer calibração do aparelho de detecção fotográfica ou (geralmente) eletrônico. Isso geralmente envolve a observação contemporânea, sob condições idênticas, de estrelas padrão cuja magnitude usando esse filtro espectral é conhecida com precisão. Além disso, como a quantidade de luz realmente recebida por um telescópio é reduzida devido à transmissão pela atmosfera terrestre, as massas de ar do alvo e as estrelas de calibração devem ser levadas em consideração. Normalmente, alguém observaria algumas estrelas diferentes de magnitude conhecida que são suficientemente semelhantes. As estrelas do calibrador próximas no céu ao alvo são favorecidas (para evitar grandes diferenças nos caminhos atmosféricos). Se essas estrelas tiverem ângulos zenitais (altitudes) um tanto diferentes, então um fator de correção em função da massa de ar pode ser derivado e aplicado à massa de ar na posição do alvo. Tal calibração obtém o brilho tal como seria observado acima da atmosfera, onde é definida a magnitude aparente.

Para os novatos em astronomia, a Magnitude Aparente escala com a potência recebida (em oposição à amplitude), portanto, para astrofotografia, você pode usar a medida de brilho relativo para dimensionar os tempos de exposição entre as estrelas. A magnitude aparente também soma (integra) sobre todo o objeto, portanto, é independente do foco. Isso precisa ser levado em consideração ao dimensionar os tempos de exposição para objetos com tamanho aparente significativo, como o Sol, a Lua e os planetas. Por exemplo, dimensionar diretamente o tempo de exposição da Lua para o Sol funciona, porque eles têm aproximadamente o mesmo tamanho no céu, mas dimensionar a exposição da Lua para Saturno resultaria em uma superexposição, se a imagem de Saturno ocupar um área menor em seu sensor do que a Lua (na mesma ampliação ou mais geralmente f/#).

Remove ads

Cálculos

Resumir
Perspectiva
Thumb
Imagem de 30 Doradus captada pelo VISTA do ESO. Esta nebulosa tem uma magnitude visual de 8
Thumb
Gráfico de brilho relativo versus magnitude

Quanto mais escuro um objeto aparece, maior é o valor numérico dado à sua magnitude, com uma diferença de 5 magnitudes correspondendo a um fator de brilho de exatamente 100. Portanto, a magnitude m, na banda espectral x, seria dada por

que é mais comumente expresso em termos de logaritmos comuns (base 10) como

onde Fx é a irradiância observada usando o filtro espectral x, e Fx,0 é o fluxo de referência (ponto zero) para aquele filtro fotométrico. Como um aumento de 5 magnitudes corresponde a uma diminuição do brilho por um fator de exatamente 100, cada aumento de magnitude implica uma diminuição do brilho pelo fator (razão de Pogson). Invertendo a fórmula acima, uma diferença de magnitude m1m2 = Δm implica um fator de brilho de

Exemplo: Sol e Lua

Qual é a proporção de brilho entre o Sol e a Lua cheia?

A magnitude aparente do Sol é −26.832[11] (mais brilhante), e a magnitude média da lua cheia é −12.74[12] (mais escura).

Diferença de magnitude:

Fator de brilho:

O Sol aparece cerca de 400.000 vezes mais brilhante que a Lua cheia.

Magnitude adicional

Às vezes, pode-se desejar adicionar brilho. Por exemplo, a fotometria em estrelas duplas estreitamente separadas pode ser capaz de produzir apenas uma medição de sua saída de luz combinada. Para encontrar a magnitude combinada dessa estrela dupla conhecendo apenas as magnitudes dos componentes individuais, isso pode ser feito adicionando o brilho (em unidades lineares) correspondente a cada magnitude.[13]

Resolvendo para resulta

onde mf é a magnitude resultante após adicionar os brilhos referidos por m1 e m2.

Magnitude bolométrica aparente

Embora a magnitude geralmente se refira a uma medição em uma banda de filtro específica correspondente a uma faixa de comprimentos de onda, a magnitude bolométrica aparente ou absoluta (mbol) é uma medida do brilho aparente ou absoluto de um objeto integrado em todos os comprimentos de onda do espectro eletromagnético (também conhecido como irradiação ou potência do objeto, respectivamente). O ponto zero da escala de magnitude bolométrica aparente é baseado na definição de que uma magnitude bolométrica aparente de 0 mag é equivalente a uma irradiância recebida de 2.518×10−8 watts por metro quadrado (W·m−2).[11]

Magnitude absoluta

Enquanto a magnitude aparente é uma medida do brilho de um objeto visto por um observador particular, a magnitude absoluta é uma medida do brilho intrínseco de um objeto. O fluxo diminui com a distância de acordo com a lei do quadrado inverso, de modo que a magnitude aparente de uma estrela depende tanto de seu brilho absoluto quanto de sua distância (e qualquer extinção). Por exemplo, uma estrela a uma distância terá a mesma magnitude aparente que uma estrela quatro vezes mais brilhante a duas vezes essa distância. Em contraste, o brilho intrínseco de um objeto astronômico não depende da distância do observador ou de qualquer extinção.

A magnitude absoluta M, de uma estrela ou objeto astronômico é definida como a magnitude aparente que teria visto a uma distância de 10 parsecs (33 anos-luz). A magnitude absoluta do Sol é de 4.83 na banda V (visual), 4.68 na banda G do sonda Gaia (verde) e 5.48 na banda B (azul).[14][15][16]

No caso de um planeta ou asteroide, a magnitude absoluta H significa a magnitude aparente que ele teria se estivesse a 1 unidade astronômica (150.000.000 km) do observador e do Sol, e totalmente iluminado na oposição máxima (uma configuração que é apenas teoricamente alcançável, com o observador situado na superfície do Sol).[17]

Remove ads

Valores de referência padrão

Resumir
Perspectiva
Mais informação Banda, λ (μm) ...

A escala de magnitude é uma escala logarítmica reversa. Um equívoco comum é que a natureza logarítmica da escala ocorre porque o próprio olho humano tem uma resposta logarítmica. Na época de Pogson, isso era considerado verdadeiro (ver a lei de Weber-Fechner), mas agora acredita-se que a resposta é uma lei de potência (ver a lei potencial de Stevens).[19]

A magnitude é complicada pelo fato de que a luz não é monocromática. A sensibilidade de um detector de luz varia de acordo com o comprimento de onda da luz, e a maneira como varia depende do tipo de detector de luz. Por esse motivo, é necessário especificar como a magnitude é medida para que o valor seja significativo. Para tanto, é amplamente utilizado o sistema UBV, no qual a magnitude é medida em três diferentes bandas de comprimento de onda: U (centrado em cerca de 350 nm, no ultravioleta próximo), B (cerca de 435 nm, na região do azul) e V (cerca de 555 nm, no meio do alcance visual humano à luz do dia). A banda V foi escolhida para fins espectrais e fornece magnitudes que correspondem de perto àquelas vistas pelo olho humano. Quando uma magnitude aparente é discutida sem qualificação adicional, a magnitude V é geralmente compreendida.

Como estrelas mais frias, como gigantes vermelhas e anãs vermelhas, emitem pouca energia nas regiões azul e ultravioleta do espectro, seu poder é frequentemente sub-representado pela escala UBV. De fato, algumas estrelas das classes L e T têm uma magnitude estimada bem acima de 100, porque emitem extremamente pouca luz visível, mas são mais fortes no infravermelho.

Medidas de magnitude precisam de tratamento cauteloso e é extremamente importante medir igual com igual. No início do século XX e em filmes fotográficos ortocromáticos (sensíveis ao azul) mais antigos, os brilhos relativos da supergigante azul Rígel e da estrela variável irregular supergigante vermelha Betelgeuse (no máximo) são invertidos em comparação com o que os olhos humanos percebem, porque esse filme arcaico é mais sensível à luz azul do que à luz vermelha. Magnitudes obtidas a partir deste método são conhecidas como magnitudes fotográficas e agora são consideradas obsoletas.

Para objetos dentro da Via Láctea com uma determinada magnitude absoluta, 5 é adicionado à magnitude aparente para cada aumento de dez vezes na distância do objeto. Para objetos a distâncias muito grandes (muito além da Via Láctea), essa relação deve ser ajustada para desvios para o vermelho e para medidas de distância não euclidianas devido à relatividade geral.[20][21]

Para planetas e outros corpos do Sistema Solar, a magnitude aparente é derivada de sua curva de fase e das distâncias ao Sol e ao observador.

Remove ads

Lista de magnitudes aparentes

Resumir
Perspectiva

Algumas das magnitudes listadas são aproximadas. A sensibilidade do telescópio depende do tempo de observação, da passagem de banda óptica e da luz interferente da dispersão e da luminescência atmosférica.

Mais informação Magnitudeaparente (V), Objeto ...
Remove ads

Ver também

Referências

  1. Curtis, Heber Doust (1903). «On the Limits of Unaided Vision». University of California. Lick Observatory Bulletin. 2 (38): 67–69. Bibcode:1903LicOB...2...67C. doi:10.5479/ADS/bib/1903LicOB.2.67CAcessível livremente Parâmetro desconhecido |orig-date= ignorado (ajuda)
  2. Matthew, Templeton (21 de outubro de 2011). «Magnitudes: Measuring the Brightness of Stars». American Association of Variable Stars (AAVSO). Consultado em 19 de maio de 2019. Cópia arquivada em 18 de maio de 2019
  3. «Vmag<6.5». SIMBAD Astronomical Database. Consultado em 25 de junho de 2010. Cópia arquivada em 22 de fevereiro de 2015
  4. «Magnitude». National Solar Observatory—Sacramento Peak. Consultado em 23 de agosto de 2006. Cópia arquivada em 6 de fevereiro de 2008
  5. Hoffmann, S., Hipparchs Himmelsglobus, Springer, Wiesbaden/ New York, 2017
  6. Pogson, N. (1856). «Magnitudes of Thirty-six of the Minor Planets for the first day of each month of the year 1857». MNRAS. 17: 12. Bibcode:1856MNRAS..17...12P. doi:10.1093/mnras/17.1.12Acessível livremente
  7. Gregory D. Wirth. «Astronomical Magnitude Systems». astro.utoronto.ca. Consultado em 3 de março de 2025. Arquivado do original em 4 de dezembro de 2012
  8. North, Gerald; James, Nick (2014). Observing Variable Stars, Novae and Supernovae. [S.l.]: Cambridge University Press. p. 24. ISBN 9781107636125
  9. Oke, J. B.; Gunn, J. E. (15 de março de 1983). «Secondary standard stars for absolute spectrophotometry». The Astrophysical Journal. 266: 713–717. Bibcode:1983ApJ...266..713O. doi:10.1086/160817
  10. IAU Inter-Division A-G Working Group on Nominal Units for Stellar & Planetary Astronomy (13 de agosto de 2015). «IAU 2015 Resolution B2 on Recommended Zero Points for the Absolute and Apparent Bolometric Magnitude Scales» (PDF). Resolutions Adopted at the General Assemblies. Bibcode:2015arXiv151006262M. arXiv:1510.06262Acessível livremente. Consultado em 19 de maio de 2019. Cópia arquivada (PDF) em 28 de janeiro de 2016
  11. Williams, David R. (2 de fevereiro de 2010). «Moon Fact Sheet». NASA (National Space Science Data Center). Consultado em 9 de abril de 2010. Cópia arquivada em 23 de março de 2010
  12. «Magnitude Arithmetic». Caglow. Consultado em 30 de janeiro de 2012. Cópia arquivada em 1 de fevereiro de 2012
  13. Evans, Aaron. «Some Useful Astronomical Definitions» (PDF). Stony Brook Astronomy Program. Consultado em 12 de julho de 2009. Cópia arquivada (PDF) em 20 de julho de 2011
  14. Čotar, Klemen; Zwitter, Tomaž; et al. (21 de maio de 2019). «The GALAH survey: unresolved triple Sun-like stars discovered by the Gaia mission». Oxford University Press (OUP). Monthly Notices of the Royal Astronomical Society. 487 (2): 2474–2490. ISSN 0035-8711. arXiv:1904.04841Acessível livremente. doi:10.1093/mnras/stz1397Acessível livremente
  15. Bessell, Michael S. (setembro de 2005). «Standard Photometric Systems» (PDF). Annual Review of Astronomy and Astrophysics. 43 (1): 293–336. Bibcode:2005ARA&A..43..293B. ISSN 0066-4146. doi:10.1146/annurev.astro.41.082801.100251. Cópia arquivada (PDF) em 9 de outubro de 2022
  16. Luciuk, M. «Astronomical Magnitudes» (PDF). p. 8. Consultado em 11 de janeiro de 2019
  17. Huchra, John. «Astronomical Magnitude Systems». Harvard-Smithsonian Center for Astrophysics. Consultado em 18 de julho de 2017. Cópia arquivada em 21 de julho de 2018
  18. Schulman, E.; Cox, C. V. (1997). «Misconceptions About Astronomical Magnitudes». American Journal of Physics. 65 (10): 1003. Bibcode:1997AmJPh..65.1003S. doi:10.1119/1.18714
  19. Umeh, Obinna; Clarkson, Chris; Maartens, Roy (2014). «Nonlinear relativistic corrections to cosmological distances, redshift and gravitational lensing magnification: II. Derivation». Classical and Quantum Gravity. 31 (20). 205001 páginas. Bibcode:2014CQGra..31t5001U. arXiv:1402.1933Acessível livremente. doi:10.1088/0264-9381/31/20/205001
  20. Hogg, David W.; Baldry, Ivan K.; Blanton, Michael R.; Eisenstein, Daniel J. (2002). «The K correction». arXiv:astro-ph/0210394Acessível livremente
  21. Agrawal, Dulli Chandra (30 de março de 2016). «Apparent magnitude of earthshine: a simple calculation». IOP Publishing. European Journal of Physics. 37 (3): 035601. Bibcode:2016EJPh...37c5601A. ISSN 0143-0807. doi:10.1088/0143-0807/37/3/035601
  22. Dufay, Jean (17 de outubro de 2012). Introduction to Astrophysics: The Stars. [S.l.: s.n.] p. 3. ISBN 9780486607719. Consultado em 28 de fevereiro de 2016. Cópia arquivada em 24 de março de 2017
  23. McLean, Ian S. (2008). Electronic Imaging in Astronomy: Detectors and Instrumentation. [S.l.]: Springer. p. 529. ISBN 978-3-540-76582-0
  24. Dolan, Michelle M.; Mathews, Grant J.; Lam, Doan Duc; Lan, Nguyen Quynh; Herczeg, Gregory J.; Dearborn, David S. P. (2017). «Evolutionary Tracks for Betelgeuse». The Astrophysical Journal. 819 (1). 7 páginas. Bibcode:2016ApJ...819....7D. arXiv:1406.3143Acessível livremente. doi:10.3847/0004-637X/819/1/7
  25. «Brightest comets seen since 1935». International Comet Quarterly. Consultado em 18 de dezembro de 2011. Cópia arquivada em 28 de dezembro de 2011
  26. Winkler, P. Frank; Gupta, Gaurav; Long, Knox S. (2003). «The SN 1006 Remnant: Optical Proper Motions, Deep Imaging, Distance, and Brightness at Maximum». The Astrophysical Journal. 585 (1): 324–335. Bibcode:2003ApJ...585..324W. arXiv:astro-ph/0208415Acessível livremente. doi:10.1086/345985
  27. «Heavens-above.com». Heavens-above. Consultado em 22 de dezembro de 2007. Cópia arquivada em 5 de julho de 2009
  28. Mallama, A.; Hilton, J.L. (2018). «Computing Apparent Planetary Magnitudes for The Astronomical Almanac». Astronomy and Computing. 25: 10–24. Bibcode:2018A&C....25...10M. arXiv:1808.01973Acessível livremente. doi:10.1016/j.ascom.2018.08.002
  29. NASA Science Question of the Week. Gsfc.nasa.gov (April 7, 2006). Retrieved on 2013-04-26.
  30. Tomkin, Jocelyn (abril de 1998). «Once and Future Celestial Kings». Sky and Telescope. 95 (4): 59–63. Bibcode:1998S&T....95d..59T – based on computations from HIPPARCOS data. (The calculations exclude stars whose distance or proper motion is uncertain.) PDF[ligação inativa]
  31. «Sirius». SIMBAD Astronomical Database. Consultado em 26 de junho de 2010. Cópia arquivada em 11 de janeiro de 2014
  32. «Canopus». SIMBAD Astronomical Database. Consultado em 26 de junho de 2010. Cópia arquivada em 14 de julho de 2014
  33. «Arcturus». SIMBAD Astronomical Database. Consultado em 26 de junho de 2010. Cópia arquivada em 14 de janeiro de 2014
  34. «Vega». SIMBAD Astronomical Database. Consultado em 14 de abril de 2010. Cópia arquivada em 7 de julho de 2015
  35. Evans, N. R.; Schaefer, G. H.; Bond, H. E.; Bono, G.; Karovska, M.; Nelan, E.; Sasselov, D.; Mason, B. D. (2008). «Direct Detection of the Close Companion of Polaris with The Hubble Space Telescope». The Astronomical Journal. 136 (3). 1137 páginas. Bibcode:2008AJ....136.1137E. arXiv:0806.4904Acessível livremente. doi:10.1088/0004-6256/136/3/1137
  36. «SIMBAD-M31». SIMBAD Astronomical Database. Consultado em 29 de novembro de 2009. Cópia arquivada em 19 de maio de 2014
  37. Yeomans; Chamberlin. «Horizon Online Ephemeris System for Ganymede (Major Body 503)». California Institute of Technology, Jet Propulsion Laboratory. Consultado em 14 de abril de 2010. Cópia arquivada em 2 de fevereiro de 2014 (4.38 on 1951-Oct-03)
  38. «M41 possibly recorded by Aristotle». SEDS (Students for the Exploration and Development of Space). 28 de julho de 2006. Consultado em 29 de novembro de 2009. Cópia arquivada em 18 de abril de 2017
  39. «Uranus Fact Sheet». nssdc.gsfc.nasa.gov (em inglês). Consultado em 8 de novembro de 2018. Cópia arquivada em 22 de janeiro de 2019
  40. «SIMBAD-M33». SIMBAD Astronomical Database. Consultado em 28 de novembro de 2009. Cópia arquivada em 13 de setembro de 2014
  41. Lodriguss, Jerry (1993). «M33 (Triangulum Galaxy)». Consultado em 27 de novembro de 2009. Cópia arquivada em 15 de janeiro de 2010 (Shows bolometric magnitude not visual magnitude.)
  42. «Messier 81». SEDS (Students for the Exploration and Development of Space). 2 de setembro de 2007. Consultado em 28 de novembro de 2009. Cópia arquivada em 14 de julho de 2017
  43. «Neptune Fact Sheet». nssdc.gsfc.nasa.gov (em inglês). Consultado em 8 de novembro de 2018. Cópia arquivada em 10 de janeiro de 2019
  44. John E. Bortle (fevereiro de 2001). «The Bortle Dark-Sky Scale». Sky & Telescope. Consultado em 18 de novembro de 2009. Arquivado do original em 23 de março de 2009
  45. Yeomans; Chamberlin. «Horizon Online Ephemeris System for Titan (Major Body 606)». California Institute of Technology, Jet Propulsion Laboratory. Consultado em 28 de junho de 2010. Cópia arquivada em 13 de novembro de 2012 (8.10 on 2003-Dec-30)
  46. «Classic Satellites of the Solar System». Observatorio ARVAL. Consultado em 25 de junho de 2010. Arquivado do original em 31 de julho de 2010
  47. «Planetary Satellite Physical Parameters». JPL (Solar System Dynamics). 3 de abril de 2009. Consultado em 25 de julho de 2009. Cópia arquivada em 23 de julho de 2009
  48. «AstDys (10) Hygiea Ephemerides». Department of Mathematics, University of Pisa, Italy. Consultado em 26 de junho de 2010. Cópia arquivada em 12 de maio de 2014
  49. Zarenski, Ed (2004). «Limiting Magnitude in Binoculars» (PDF). Cloudy Nights. Consultado em 6 de maio de 2011. Cópia arquivada (PDF) em 21 de julho de 2011
  50. Williams, David R. (7 de setembro de 2006). «Pluto Fact Sheet». NASA. Consultado em 26 de junho de 2010. Cópia arquivada em 1 de julho de 2010
  51. «AstDys (2060) Chiron Ephemerides». Department of Mathematics, University of Pisa, Italy. Consultado em 26 de junho de 2010. Cópia arquivada em 29 de junho de 2011
  52. «AstDys (136472) Makemake Ephemerides». Department of Mathematics, University of Pisa, Italy. Consultado em 26 de junho de 2010. Cópia arquivada em 29 de junho de 2011
  53. «AstDys (136108) Haumea Ephemerides». Department of Mathematics, University of Pisa, Italy. Consultado em 26 de junho de 2010. Cópia arquivada em 29 de junho de 2011
  54. Steve Cullen (sgcullen) (5 de outubro de 2009). «17 New Asteroids Found by LightBuckets». LightBuckets. Consultado em 15 de novembro de 2009. Arquivado do original em 31 de janeiro de 2010
  55. Boffin, H.M.J.; Pourbaix, D. (2014). «Possible astrometric discovery of a substellar companion to the closest binary brown dwarf system WISE J104915.57–531906.1». Astronomy and Astrophysics. 561. 5 páginas. Bibcode:2014A&A...561L...4B. arXiv:1312.1303Acessível livremente. doi:10.1051/0004-6361/201322975
  56. Sheppard, Scott S. «Saturn's Known Satellites». Carnegie Institution (Department of Terrestrial Magnetism). Consultado em 28 de junho de 2010. Cópia arquivada em 15 de maio de 2011
  57. What is the faintest object imaged by ground-based telescopes? Arquivado em 2016-02-02 no Wayback Machine, by: The Editors of Sky Telescope, 24 July 2006
  58. «New Image of Comet Halley in the Cold». ESO. 1 de setembro de 2003. Consultado em 22 de fevereiro de 2009. Arquivado do original em 1 de março de 2009
  59. Illingworth, G. D.; Magee, D.; Oesch, P. A.; Bouwens, R. J.; Labbé, I.; Stiavelli, M.; van Dokkum, P. G.; Franx, M.; Trenti, M.; Carollo, C. M.; Gonzalez, V. (21 de outubro de 2013). «The HST eXtreme Deep Field XDF: Combining all ACS and WFC3/IR Data on the HUDF Region into the Deepest Field Ever». The Astrophysical Journal Supplement Series. 209 (1). 6 páginas. Bibcode:2013ApJS..209....6I. arXiv:1305.1931Acessível livremente. doi:10.1088/0067-0049/209/1/6
Remove ads

Ligações externas

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads