Top Qs
Linha do tempo
Chat
Contexto

WASP-17

estrela Da Wikipédia, a enciclopédia livre

WASP-17
Remove ads

WASP-17 é uma estrela de classe F na constelação de Scorpius, com uma magnitude aparente visual de 11,5.[2] De acordo com dados de paralaxe, do terceiro lançamento do catálogo Gaia, está localizada a uma distância de aproximadamente 1 320 anos-luz (400 parsecs) da Terra.[5] Em 2009, foi descoberto um planeta extrassolar Júpiter quente por trânsito em uma órbita retrógrada ao redor da estrela.[3]

Factos rápidos Dados observacionais (J2000), Características ...
Remove ads

Características

Resumir
Perspectiva

WASP-17 já foi classificada com um tipo espectral de F6[3] ou F4,[4] e é uma estrela evoluída mais brilhante que uma típica estrela da sequência principal. Modelos evolucionários indicam que esta estrela tem uma massa de aproximadamente 1,29 vezes a massa solar e expandiu-se para um raio 1,58 vezes superior ao raio solar, com uma idade de 2,7 bilhões de anos.[6] A temperatura efetiva de sua fotosfera já foi estimada entre 6 500 e 6 650 K,[2][4] dando à estrela a coloração branco-amarela típica de estrelas de classe F.[8] A metalicidade de WASP-17 parece ser um pouco menor que a solar, com estimativas de sua abundância de ferro variando entre 56% da solar ([Fe/H] = -0,25)[3] e 95% da solar (Fe/H] = -0,02).[7] Sua velocidade de rotação projetada, determinada diretamente da observação do trânsito do planeta, é de 10 km/s.[4]

Mais informação Massa (M☉), Raio (R☉) ...
Remove ads

Sistema planetário

Resumir
Perspectiva

Em 2009, foi descoberto pelo projeto SuperWASP um planeta extrassolar em trânsito orbitando esta estrela, denominado WASP-17b.[3] Sua órbita tem um período curto de 3,735 dias e está inclinada em 86,7° em relação ao plano do céu.[6] Inicialmente, os dados indicavam uma excentricidade orbital considerável de 0,13,[3] mas observações mais recentes mostraram que a órbita é circular.[6]

Esse planeta é um Júpiter quente com uma massa de 48% da massa de Júpiter a uma distância de apenas 0,051 UA da estrela.[6] O trânsito do planeta tem duração de 4,3 horas e apresenta uma curva de luz bastante profunda, com uma diminuição de 1,7% no brilho total da estrela.[3] Isso indica que o planeta é muito grande, com um raio de 1,93 vezes o raio de Júpiter, correspondendo a uma baixa densidade de 0,08 g/cm3. Em 2012, ele era o maior planeta conhecido. Esse fenômeno de inflação no raio planetário devido à alta irradiação estelar é observado em vários Júpiteres quentes, principalmente em torno de estrelas quentes de classe F, e permanece um desafio aos modelos teóricos de física planetária.[6]

Observações infravermelhas a 4,5 e 8 µm pelo Telescópio Espacial Spitzer detectaram diminuição de 0,2% no brilho do sistema durante o eclipse secundário, quando o planeta passa atrás da estrela. Isso indica que o planeta é quente e emite energia termal significativa, com uma temperatura efetiva estimada em 1881 ± 50 e 1580 ± 150 K pela emissão a 4,5 e 8 µm respectivamente. Esses valores são consistentes com um baixo albedo e uma eficiente recirculação de energia entre o lado iluminado e o escuro do planeta, já que sua temperatura de equilíbrio calculada para essas condições é de 1771 ± 35 K.[9]

Quando um planeta passa na frente de uma estrela em rotação, ele bloqueia parte da luz da estrela se afastando e se aproximando do observador, causando uma aparente mudança na velocidade radial da estrela durante o trânsito. Esse fenômeno, conhecido como efeito Rossiter–McLaughlin, foi usado para mostrar que WASP-17b orbita sua estrela de forma retrógrada, na direção oposta à de rotação estelar, com um ângulo de cerca de 150° entre o plano da órbita e o eixo de rotação estelar. Isso significa que o planeta provavelmente evoluiu para sua posição atual por interações gravitacionais com um segundo planeta ou estrela no sistema. Acredita-se que todos os Júpiteres quentes foram originalmente formados distantes de suas estrelas, depois da linha do gelo, e migraram para perto por algum tipo de interação com o gás ou poeira circunstelar ou outros objetos.[3][10][4]

Observações espectroscópicas do trânsito em diferentes comprimentos de onda permitem explorar a composição atmosférica de um planeta, já que o raio do planeta parecerá maior em regiões do espectro em que a opacidade atmosférica é aumentada devido à absorção da luz estelar por um certo componente químico. Essa técnica, chamada de espectroscopia de transmissão, foi usada em diversos estudos para detectar sódio (Na),[11][12] água (H2O),[13] e potássio (K) na atmosfera de WASP-17b.[14] As intensas linhas de absorção desses componentes indicam que a atmosfera do planeta não possui cobertura significativa de nuvens ou névoa.[15]

Mais informação Planeta, Massa ...
Mais informação Excentricidade, Massa (MJ) ...
Remove ads

Referências

  1. «TYC 6787-1927-1 -- Star». SIMBAD. Centre de Données astronomiques de Strasbourg. Consultado em 19 de março de 2018
  2. Maxted, P. F. L.; Koen, C.; Smalley, B. (dezembro de 2011). «UBV(RI)C photometry of transiting planet hosting stars». Monthly Notices of the Royal Astronomical Society. 418 (2): 1039-1042. Bibcode:2011MNRAS.418.1039M. doi:10.1111/j.1365-2966.2011.19554.x
  3. Anderson, D. R.; et al. (janeiro de 2010). «WASP-17b: An Ultra-Low Density Planet in a Probable Retrograde Orbit». The Astrophysical Journal. 709 (1): 159-167. Bibcode:2010ApJ...709..159A. doi:10.1088/0004-637X/709/1/159
  4. Triaud, A. H. M. J.; et al. (dezembro de 2010). «Spin-orbit angle measurements for six southern transiting planets. New insights into the dynamical origins of hot Jupiters». Astronomy and Astrophysics. 524: A25, 22. Bibcode:2010A&A...524A..25T. doi:10.1051/0004-6361/201014525
  5. Gaia Collaboration: Brown, A. G. A.; Vallenari, A.; Prusti, T.; et al. (maio de 2021). «Gaia Early Data Release 3. Summary of the contents and survey properties». Astronomy & Astrophysics. 649: A1, 20 pp. Bibcode:2021A&A...649A...1G. arXiv:2012.01533Acessível livremente. doi:10.1051/0004-6361/202039657 Catálogo VizieR
  6. Southworth, John; et al. (outubro de 2012). «High-precision photometry by telescope defocusing - IV. Confirmation of the huge radius of WASP-17 b». Monthly Notices of the Royal Astronomical Society. 426 (2): 1338-1348. Bibcode:2012MNRAS.426.1338S. doi:10.1111/j.1365-2966.2012.21781.x
  7. Torres, Guillermo; et al. (outubro de 2012). «Improved Spectroscopic Parameters for Transiting Planet Hosts». The Astrophysical Journal. 757 (2): artigo 161, 14. Bibcode:2012ApJ...757..161T. doi:10.1088/0004-637X/757/2/161
  8. «The Colour of Stars». Australia Telescope, Outreach and Education. Commonwealth Scientific and Industrial Research Organisation. 21 de dezembro de 2004. Consultado em 21 de março de 2018
  9. Anderson, D. R.; et al. (setembro de 2011). «Thermal emission at 4.5 and 8 µm of WASP-17b, an extremely large planet in a slightly eccentric orbit». Monthly Notices of the Royal Astronomical Society. 416 (3): 2108-2122. Bibcode:2011MNRAS.416.2108A. doi:10.1111/j.1365-2966.2011.19182.x
  10. Bayliss, Daniel D. R.; Winn, Joshua N.; Mardling, Rosemary A.; Sackett, Penny D. (outubro de 2010). «Confirmation of a Retrograde Orbit for Exoplanet WASP-17b». The Astrophysical Journal Letters. 722 (2): L224-L227. Bibcode:2010ApJ...722L.224B. doi:10.1088/2041-8205/722/2/L224
  11. Wood, P. L.; Maxted, P. F. L.; Smalley, B.; Iro, N. (abril de 2011). «Transmission spectroscopy of the sodium 'D' doublet in WASP-17b with the VLT». Monthly Notices of the Royal Astronomical Society. 412 (4): 2376-2382. Bibcode:2011MNRAS.412.2376W. doi:10.1111/j.1365-2966.2010.18061.x
  12. Zhou, G.; Bayliss, D. D. R. (novembro de 2012). «Detection of sodium absorption in WASP-17b with Magellan». Monthly Notices of the Royal Astronomical Society. 426 (3): 2483-2488. Bibcode:2012MNRAS.426.2483Z. doi:10.1111/j.1365-2966.2012.21817.x
  13. Mandell, Avi M.; et al. (dezembro de 2013). «Exoplanet Transit Spectroscopy Using WFC3: WASP-12 b, WASP-17 b, and WASP-19 b». The Astrophysical Journal. 779 (2): artigo 128, 18. Bibcode:2013ApJ...779..128M. doi:10.1088/0004-637X/779/2/128
  14. Sedaghati, E.; et al. (novembro de 2016). «Potassium detection in the clear atmosphere of a hot-Jupiter. FORS2 transmission spectroscopy of WASP-17b». Astronomy & Astrophysics. 596: A47, 14. Bibcode:2016A&A...596A..47S. doi:10.1051/0004-6361/201629090
  15. Sing, David K.; et al. (janeiro de 2016). «A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion». Nature. 529 (7584): 59-62. Bibcode:2016Natur.529...59S. doi:10.1038/nature16068
  16. Bento, J.; et al. (janeiro de 2014). «Optical transmission photometry of the highly inflated exoplanet WASP-17b». Monthly Notices of the Royal Astronomical Society. 437 (2): 1511-1518. Bibcode:2014MNRAS.437.1511B. doi:10.1093/mnras/stt1979
Remove ads

Ligações externas

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads