Simetrie icosaedrică

From Wikipedia, the free encyclopedia

Simetrie icosaedrică
Remove ads

Simetria icosaedrică este cea a icosaedruui regulat, care are 60 de simetrii de rotație (care conservă orientarea) și 120 de simetrii în total. Acestea includ transformări care combină o reflexie și o rotație. Un dodecaedru are același set de simetrii, deoarece este dualul icosaedrului.

Mai multe informații Grup poliedric, [n,3], (*n32) ...
Thumb
Domeniile fundamentale ale simetriei icosaedrice
Thumb
Minge de fotbal, un exemplu comun de icosaedru trunchiat sferic, are simetrie icosaedrică completă
Thumb
Rotațiile și reflexiile formează grupul de simetrie al marelui icosaedru

Grupul de simetrie completă (inclusiv reflexiile) este cunoscut sub numele de grupul Coxeter H3 și este reprezentat prin notația Coxeter [5,3] și diagrama Coxeter . Setul de simetrii care conservă orientarea formează un subgrup care este izomorf cu grupul A5 (grupul altern de 5 elemente).

Remove ads

Ca grup punctual

În afară de cele două serii infinite de simetrie prismatică și antiprismatică, simetria icosaedrică de rotație sau simetria icosaedrică chirală a obiectelor chirale și simetria icosaedrică completă sau simetria icosaedrică achirală sunt simetrii de puncte discrete (sau, echivalent, simetrii pe sferă) cu cele mai mari grupuri de simetrie.

Simetria icosaedrică nu este compatibilă cu simetria de translație, așa că nu există grupuri de puncte cristalografice sau grupuri spațiale⁠(d) asociate.

Mai multe informații Schoenflies, Coxeter ...

Prezentările⁠(d) corespunzătoare celor de mai sus sunt:

Acestea corespund grupurilor icosaedrice (de rotație și complete) fiind grupurile triunghiului⁠(d) (2,3,5).

Prima prezentare a fost făcută de William Rowan Hamilton în 1856, în lucrarea sa despre calculul icosian.[1]

Sunt posibile și alte prezentări, de exemplu ca grup altern (pentru I).

Vizualizări

Mai multe informații Schoe. (Orb.), Coxeter ...
Remove ads

Structura grupului

Thumb Thumb
Laturile unui compus de cinci octaedre sferic reprezintă cele 15 plane de oglindire ca cercuri mari colorate. Fiecare octaedru poate reprezenta 3 plane de oglindire ortogonale care conțin laturile sale.
Thumb Thumb
Simetria piritoedrică este un subgrup cu indice 5 de simetrie icosaedrică, cu 3 linii de reflexie ortogonale verzi și 8 puncte de rotație de ordinul 3 roșii. Există 5 orientări diferite ale simetriei piritoedrice.

Grupul de rotație icosaedric I este de ordinul 60. Grupul I este izomorf cu A5, grupul altern al permutărilor pare a cinci obiecte. Acest izomorfism poate fi realizat prin I care acționează asupra diverșilor compuși, în special compusul de cinci cuburi (care se înscrie în dodecaedru), compusul de cinci octaedre, sau oricare dintre cei doi compuși de cinci tetraedre (care sunt enantiomorfi, și se înscriu în dodecaedru).

Grupul conține 5 versiuni de Th cu 20 de versiuni de D3 (10 axe, 2 pe axă) și 6 versiuni de D5.

Grupul icosaedric complet Ih are ordinul 120. Are I ca subgrup normal⁠(d) de indice⁠(d) 2. Grupul Ih este izomorf la I × Z2 sau A5 × Z2, cu inversiunea față de centru corespunzătoare elementului (identitate, −1), unde Z2 se scrie multiplicativ.

Ih acționează asupra compusului de cinci cuburi și compusului de cinci octaedre, dar −1 acționează ca identitate (deoarece cuburile și octaedrele au simetrie față de centru). Acționează asupra compusului de zece tetraedre: I acționează asupra celor două jumătăți chirale (compușii de cinci tetraedre), iar −1 interschimbă cele două jumătăți. De remarcat că el nu acționează ca S5, iar aceste grupuri nu sunt izomorfe.

Grupul conține 10 versiuni de D3d și 6 versiuni de D5d (simetrii ca ale antiprismelor).

I este izomorf și cu PSL2(5), dar Ih nu este izomorf cu SL2(5).

Izomorfismul lui I cu A5

Este util să se descrie explicit cum arată izomorfismul dintre I și A5. În tabelul următor permutările Pi și Qi acționează asupra a 5 și respectiv 12 elemente, în timp ce matricile de rotație Mi sunt elementele I. Dacă Pk este produsul permutării Pi cu aplicarea Pj, atunci pentru aceleași valori ale lui i, j și k este adevărat și că Qk este produsul Qi cu aplicarea Qj, și că înmulțirea unui vector cu Mk este același lucru cu înmulțirea acelui vector cu Mi și apoi înmulțirea acelui rezultat cu Mj, adică Mk = Mj × Mi. Deoarece permutările Pi sunt toate cele 60 de permutări pare ale lui 1 2 3 4 5, corespondența unu-la-unu este explicită, deci și izomorfismul.

Mai multe informații , ...

Grupuri frecvent confundate

Toate grupurile următoare sunt de ordinul 120, dar nu sunt izomorfe:

  • S5, grupul simetric de 5 elemente;
  • Ih, grupul icosaedric complet (subiectul acestui articol, cunoscut și ca H3);
  • 2I, grupul icosaedric binar⁠(d).

Acestea corespund următoarelor secvențe:

;
;
.

În cuvinte,

  • este subgrupul normal al ;
  • este factorul lui , care este produsul direct⁠(d);
  • este grupul factor al

De observat că are o reprezentare tridimensională ireductibilă obiect excepțional⁠(d) (ca grupul icosaedric de rotație), dar nu are o reprezentare tridimensională ireductibilă, corespunzătoare grupului icosaedric complet nefiind grupul simetric.

De asemenea, acestea pot fi legate de grupuri liniare peste corpuri finite cu cinci elemente, care prezintă subgrupurile și grupurile de acoperire direct; niciunul dintre acestea nu este grupul icosaedric complet:

  • grup proiectiv liniar⁠(d) special;
  • grupul proiectiv liniar general;
  • grupul liniar special⁠(d).

Clase de conjugare

Cele 120 de simetrii se încadrează în 10 clase de conjugare.

Mai multe informații I, clase suplimentare ale Ih ...

Subgrupuri ale grupului de simetrie icosaedrică completă

Thumb
Relațiile subgrupului
Thumb
Relațiile subgrupului chiral

Fiecare linie din următorul tabel reprezintă o clasă de subgrupuri conjugate (adică, echivalente geometric). Coloana „Mult.” (multiplicitatea) dă numărul de subgrupuri diferite din clasa de conjugare.
Legenda culorilor: verde = grupurile care sunt generate de reflexii, roșu = grupurile chirale (care conservă orientarea), care conțin doar rotații.

Grupurile sunt descrise geometric în termeni de dodecaedru. Abrevierea „j.î.s.(latură)” înseamnă „jumătate de întoarcere interschimbând această latură cu latura opusă ei” și, similar, pentru „față” și „vârf”.

Mai multe informații Schoe., Coxeter ...

Stabilizatori de vârfuri

Stabilizatorii unei perechi opuse de vârfuri pot fi interpretați ca stabilizatori ai axei pe care o generează. generate.

  • stabilizatorii de vârfuri din I generează grupuri ciclice C3;
  • stabilizatorii de vârfuri din Ih generează grupuri diedrale D3;
  • stabilizatorii unei perechi de vârfuri opuse din I generează grupuri diedrale D3;
  • stabilizatorii unei perechi de vârfuri opuse din Ih generează .

Stabilizatori de laturi

Stabilizatorii unei perechi opuse de laturi pot fi interpretați ca stabilizatori ai dreptunghiului pe care îl generează.

  • stabilizatorii de laturi din I generează grupuri ciclice Z2;
  • stabilizatorii de laturi din Ih generează grupuri Klein de patru ;
  • stabilizatorii unei perechi de laturi din I generează grupuri Klein de patru ; există 5 dintre acestea, generate prin rotații de 180° în 3 axe perpendiculare;
  • stabilizatorii unei perechi de laturi din Ih generează ; există 5 dintre acestea, generate prin reflexii în 3 axe perpendiculare.

Stabilizatori de fețe

Stabilizatorii unei perechi opuse de fețe pot fi interpretați ca stabilizatori ai antiprismei pe care o generează.

  • stabilizatorii de fețe din I generează grupuri ciclice C5
  • stabilizatorii de fețe din Ih generează grupuri diedrale D5
  • stabilizatorii unei perechi de fețe opuse din I generează grupuri diedrale D5
  • stabilizatorii unei perechi de fețe opuse din Ih generează .

Stabilizatori de poliedre

Pentru fiecare dintre acestea există 5 copii conjugate, iar acțiunea de conjugare dă o aplicație care este un izomorfism, .

  • stabilizatorii tetraedrelor înscrise din I sunt o copie a T
  • stabilizatorii tetraedrelor înscrise din Ih sunt o copie a T
  • stabilizatorii cuburilor înscrise (sau perechi opuse de tetraedre sau octaedre) din I sunt o copie a T
  • stabilizatorii cuburilor înscrise (sau perechi opuse de tetraedre sau octaedre) din Ih sunt o copie a Th

Generatorii grupului Coxeter

Grupul de simetrie icosaedrică completă [5,3] () de ordinul 120 are generatorii reprezentați de matricile de reflexie R0, R1, R2 mai jos în relațiile R02 = R12 = R22 = (R0×R1)5 = (R1×R2)3 = (R0×R2)2 = identitatea. Grupul [5,3]+ () de ordinul 60 este generat de oricare două dintre rotațiile S0,1, S1,2, S0,2. O rotație improprie de ordinul 10 este generată de V0,1,2, produsul tuturor celor 3 reflexii. Aici este secțiunea de aur.

Mai multe informații , ...
Remove ads

Domeniu fundamental

Domeniile fundamentale pentru grupul icosaedric de rotație și grupul icosaedric complet sunt date de:

Thumb
Grupul icosaedric de rotație
I
Thumb
Grupul icosaedric complet
Ih
Thumb
Fețele triacontaedrului disdiakis sunt domeniul fundamental

În tricontaedrul disdiakis o singură față este un domeniu fundamental; alte poliedre cu aceeași simetrie pot fi obținute prin ajustarea orientării fețelor, de exemplu aplatizarea subseturilor selectate de fețe pentru a combina fiecare subset într-o singură față sau înlocuirea fiecărei fețe cu mai multe fețe sau cu o suprafață curbată.

Poliedre cu simetrie icosaedrică

Poliedre chirale

Mai multe informații Clasa, Simboluri ...

Poliedre cu simetrie completă

Remove ads

Note

Bibliografie

Vezi și

Legături externe

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads