Лучшие вопросы
Таймлайн
Чат
Перспективы

Время Ляпунова

характеристическое время, за которое динамическая система приходит к хаотическому состоянию Из Википедии, свободной энциклопедии

Remove ads

Время Ляпунова — время, за которое система приводится к полному хаосу. Определяется как число, обратное к наибольшей из экспонент Ляпунова системы[1]. Названо в честь математика А. М. Ляпунова.

Применение

Время Ляпунова отражает пределы предсказуемости системы. Оно определено как время, за которое расстояние между соседними траекториями системы возрастает в e раз. Иногда говорят о возрастании расстояния между траекториями в 2 или в 10 раз, имея при этом в виду потерю одного двоичного или десятичного разряда[2].

Понятие применяется во многих приложениях теории динамических систем, в особенности в небесной механике, где оно имеет большое значение для вопроса об устойчивости Солнечной системы. Эмпирические оценки времени Ляпунова часто рассматриваются как подверженные неопределённости[3][4].

Согласно И. Пригожину, «время Ляпунова позволяет нам ввести внутренний „масштаб времени“ для хаотических систем, то есть интервал времени, в течение которого выражение „две одинаковые“ системы, соответствующие одним и тем же начальным условиям, сохраняет смысл (допускает в определённой мере предсказание). После достаточно продолжительного по сравнению с временем Ляпунова периода эволюции, память о начальном состоянии системы полностью утрачивается: задание начального состояния не позволяет более определить траекторию»[5].

Remove ads

Примеры

Некоторые примеры оценок времени Ляпунова[2]:

Подробнее Система, Время Ляпунова ...
Remove ads

Примечания

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads