Лучшие вопросы
Таймлайн
Чат
Перспективы

Десятичная система счисления

позиционная система счисления по целочисленному основанию 10 Из Википедии, свободной энциклопедии

Remove ads

Десяти́чная систе́ма счисле́ния — позиционная система счисления по целочисленному основанию 10. Одна из наиболее распространённых систем. В ней используются цифры 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, называемые арабскими цифрами. Предполагается, что основание 10 связано с количеством пальцев на руках у человека.

Один десятичный разряд называется децит (decit) (сокращение от decimal digit).

Remove ads

Определение

Суммиров вкратце
Перспектива

Один десятичный разряд в десятичной системе счисления (децит) иногда называют декадой. В цифровой электронике одному десятичному разряду десятичной системы счисления (дециту) соответствует один десятичный триггер.

Целое число x в десятичной системе счисления представляется в виде конечной линейной комбинации степеней числа 10:

, где  — это целые числа, называемые цифрами, удовлетворяющие неравенству

Обычно для ненулевого числа x требуют, чтобы старшая цифра в десятичном представлении x была также ненулевой.

Например, число сто три представляется в десятичной системе счисления в виде:

С помощью n позиций в десятичной системе счисления можно записать целые числа от 0 до , то есть, всего различных чисел.

Дробные числа записываются в виде строки цифр с разделителем десятичная запятая, называемой десятичной дробью:

где n — число разрядов целой части числа, m — число разрядов дробной части числа.

Двоично-десятичное кодирование

В двоичных компьютерах применяют двоично-десятичное кодирование десятичных цифр, при этом для одной двоично-десятичной цифры отводится четыре двоичных разряда (двоичная тетрада). Двоично-десятичные числа требуют большего количества битов для своего хранения[1]. Так, четыре двоичных разряда имеют 16 состояний, и при двоично-десятичном кодировании 6 из 16 состояний двоичной тетрады не используются[2].

Таблица сложения в десятичной системе счисления

Подробнее + ...

Одноразрядное двухоперандное (двухаргументное) десятичное сложение является одной из бинарных (двухаргументных, двухоперандных, двухвходовых) десятичных логических функций с бинарным (двухразрядным) результатом, имеющей кроме собственного номера и собственное название словами: "одноразрядный десятичный полусумматор".

Десятичной функцией в теории функциональных систем и в десятичной логике называют функцию типа , где  — десятичное множество, а  — неотрицательное целое число, которое называют арностью или местностью функции.

Всего существует простейших бинарных с бинарным (двухразрядным) результатом десятичных логических функций (2 децита -> 2 децита), где m - количество аргументов функции (входная "-арность"), а n - количество результатов действия функции (выходная "-арность"), что больше всех больших чисел Дирака вместе взятых и числа Шеннона (оценочное минимальное количество неповторяющихся шахматных партий, вычисленное в 1950 году американским математиком Клодом Шенноном, составляет приблизительно ) впридачу.

Одноразрядное двухоперандное (двухаргументное) десятичное сложение можно также представить, как комбинацию (объединение двух) бинарных (двухаргументных, двухоперандных, двухвходовых) десятичных логических функцией с унарным (одноразрядным) результатом, имеющих кроме собственных номеров и собственные названия словами: "одноразрядное десятичное бинарное сложение по модулю 10" и "единица переноса в следующий разряд при одноразрядном десятичном бинарном сложении".

Всего существует простейших бинарных с унарным (одноразрядным) результатом десятичных логических функций (2 децита -> 1 децит).

Номер функции "одноразрядное десятичное бинарное сложение по модулю 10" содержит все значения функции при переборе значений аргументов от 0 до 9 и относительно просто получается из таблицы десятичного полусумматора: 8765432109 7654321098 6543210987 5432109876 4321098765 3210987654 2109876543 1098765432 0987654321 9876543210 (пробелы отделяют по 10 знаков в номере функции).

Номер функции "единица переноса в следующий разряд при одноразрядном десятичном бинарном сложении" содержит все значения функции при переборе значений аргументов от 0 до 9 и тоже относительно просто получается из таблицы десятичного полусумматора: 1111111110 1111111100 1111111000 1111110000 1111100000 1111000000 1110000000 1100000000 1000000000 0000000000 (пробелы отделяют по 10 знаков в номере функции).

Так как в разряде переноса не бывает значения больше 1, то разряд переноса в одноразрядном десятичном полусумматоре является более простой десятичной функцией с унарным (одноразрядным) двоичным результатом (2 децита -> 1 бит).

Таблица умножения в десятичной системе счисления

Подробнее × ...

Одноразрядное двухоперандное (двухаргументное) десятичное умножение является одной из бинарных (двухаргументных, двухоперандных, двухвходовых) десятичных логических функций с бинарным (двухразрядным) результатом, имеющей кроме собственного номера и собственное название словами: "одноразрядный десятичный умножитель".

Одноразрядный двухоперандный (двухаргументный) десятичный умножитель можно также представить, как комбинацию (объединение двух) бинарных (двухаргументных, двухоперандных, двухвходовых) десятичных логических функцией с унарным (одноразрядным) результатом, имеющих кроме собственных номеров и собственные названия словами: "младший разряд одноразрядного десятичного бинарного умножения" и "старший разряд одноразрядного десятичного бинарного умножения".

Всего существует простейших бинарных с унарным (одноразрядным) результатом десятичных логических функций (2 децита -> 1 децит).

Номер функции "младший разряд одноразрядного десятичного бинарного умножения" содержит все значения функции при переборе значений аргументов от 0 до 9 и относительно просто получается из таблицы десятичного умножения: 1234567890 2468024680 3692581470 4826048260 5050505050 6284062840 7418529630 8642086420 9876543210 0000000000 (пробелы отделяют по 10 знаков в номере функции).

Номер функции "старший разряд одноразрядного десятичного бинарного умножения" содержит все значения функции при переборе значений аргументов от 0 до 9 и тоже относительно просто получается из таблицы десятичного умножения: 8765432100 7654432100 6544322100 5443321100 4433221100 3322211000 2221110000 1111100000 0000000000 0000000000 (пробелы отделяют по 10 знаков в номере функции).

Remove ads

История

Суммиров вкратце
Перспектива

Десятичная непозиционная система счисления с единичным кодированием десятичных цифр (от 1 до 1 000 000) возникла во второй половине третьего тысячелетия до н. э. в Древнем Египте (египетская система счисления).

В другой великой цивилизации — вавилонской с её шестидесятеричной системой — за две тысячи лет до н. э. внутри позиционных шестидесятеричных разрядов использовалась непозиционная (аддитивная) десятичная система счисления с единичным кодированием десятичных цифр[3]. Египетская десятичная система повлияла на аналогичную систему в первых европейских системах письма, таких как критские иероглифы, линейное письмо А и линейное письмо Б.

Древнейшая известная запись позиционной десятичной системы обнаружена в Индии в 595 г. Нуль в то время применялся не только в Индии, но и в Китае. В этих старинных системах для записи одинакового числа использовались символы, рядом с которыми дополнительно помечали, в каком разряде они стоят. Потом перестали помечать разряды, но число всё равно можно прочитать, так как у каждого разряда есть своя позиция. А если позиция пустая, её нужно пометить нулём. В поздних вавилонских текстах такой знак стал появляться, но в конце числа его не ставили. Лишь в Индии нуль окончательно занял своё место, эта запись распространилась затем по всему миру.

Индийская нумерация пришла сначала в арабские страны, затем и в Западную Европу. О ней рассказал среднеазиатский математик аль-Хорезми. Простые и удобные правила сложения и вычитания чисел, записанных в позиционной системе, сделали её особенно популярной. А поскольку труд аль-Хорезми был написан на арабском, то за индийской нумерацией в Европе закрепилось иное название — «арабская» (арабские цифры).

Кипу инков

Прообразом баз данных, широко использовавшихся в Центральных Андах (Перу, Боливия) в государственных и общественных целях в I—II тысячелетии н. э., была узелковая письменность Инков — кипу, состоявшая как из числовых записей десятичной системы[4], так и не числовых записей в двоичной системе кодирования[5]. В кипу применялись первичные и дополнительные ключи, позиционные числа, кодирование цветом и образование серий повторяющихся данных[6]. Кипу впервые в истории человечества использовалось для применения такого способа ведения бухгалтерского учёта, как двойная запись[7].

Преимущества десятичной позиционной системы

Реализованная с помощью индоарабских цифр десятичная позиционная система счисления постепенно вытеснила римские цифры и другие непозиционные системы нумерации благодаря множеству несомненных преимуществ[8].

  • Индийская запись чисел компактнее римской и позволяет быстро сравнивать разные числа по величине.
  • При расчётах на абаке можно одновременно записывать числа и проводить расчёты.
  • Вычисления стало возможно проводить без абака, на бумаге. Появились новые, более простые методы умножения и деления, специально рассчитанные на индоарабские цифры.
  • Вычислительная математика и математика вообще получили мощный импульс к развитию. Например, трудно представить изобретение логарифмов без индоарабских цифр.
  • Появилась возможность создания счётных машин.
Remove ads

Наименование степеней десяти

Суммиров вкратце
Перспектива

В стандартной десятичной системе счисления для именования больших чисел используются именные названия степеней тысячи, такие как миллион (1 000 000) и миллиард (1 000 000 000). Промежуточные степени десяти образуются прибавлением слов десять или сто, например десять миллионов (10 000 000) и сто миллиардов (100 000 000 000); другие промежуточные количества образуются прибавлением к именным названиям степеней тысячи числительных до тысячи, например сто двадцать семь миллионов (127 000 000). Для биллиона и следующих числительных есть два возможных значения: в короткой шкале каждая очередная именованная единица содержит 1000 предыдущих, а в длинной — миллион; так, биллион, следующий за миллионом, может означать как 109, так и 1012.

Степени десяти в Индии

В Индии используется альтернативный способ именованию степеней десяти, основанный на устаревшей ведической системе счисления с основанием 100, согласно которой собственные названия имеют 103, 105 и следующие степени десяти через один, а промежуточные образуются прибавлением числительного десять. Система была официально утверждена в 1987 году и исправлена в 2002 году[9].

Подробнее Число, Ведическая ...

При записи чисел в индийской системе разделители размещаются в соответствии с этими наименованиями степеней: например, число, записываемое в стандартной системе как 50 801 592, в индийской будет иметь вид будет 5 08 01 592[10]. Названия лакх и крор используются в индийском диалекте английского языка (lakh, crore), хинди (लाख lākh, करोड़ karod) и других языках Южной Азии.

Применение

См. также

Примечания

Литература

Ссылки

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads