Лучшие вопросы
Таймлайн
Чат
Перспективы

Граф Дюрера

неориентированный кубический граф с 12 вершинами и 18 рёбрами Из Википедии, свободной энциклопедии

Граф Дюрера
Remove ads

Граф Дюрера — неориентированный кубический граф с 12 вершинами и 18 рёбрами. Граф назван именем Альбрехта Дюрера, чья гравюра «Меланхолия» (1514) содержала изображение так называемого многогранника Дюрера — выпуклого многогранника, имеющего граф Дюрера в качестве остова[англ.]. Многогранник Дюрера является одним из четырёх возможных хорошо укрытых простых выпуклых многогранников.

Thumb
«Меланхолия» Альбрехта Дюрера
Remove ads

Многогранник Дюрера

Многогранник Дюрера комбинаторно эквивалентен кубу с двумя усечёнными противоположными вершинами[1], хотя на рисунке Дюрера он, скорее, нарисован как усечённый ромбоэдр или трёхгранный усечённый трапецоид[2]. Точные геометрические свойства нарисованного Дюрером многогранника служат предметом академических споров, в которых предполагаются различные гипотетические значения (острых) углов от 72° до 82°[3].

Remove ads

Свойства графа

Суммиров вкратце
Перспектива
Краткие факты Граф Дюрера, Назван в честь ...

Граф Дюрера является графом, образованным вершинами и рёбрами многогранника Дюрера. Граф является кубическим с обхватом 3 и диаметром 4. Поскольку граф является скелетом многогранника Дюрера, он может быть получен путём применения преобразования треугольник-звезда противоположных вершин графа куба или как обобщённый граф Петерсена . Как и любой другой граф выпуклого многогранника, граф Дюрера является вершинно 3-связным простым планарным графом.

Граф Дюрера является хорошо укрытым, что означает, что все его наибольшие независимые множества имеют одно и то же число вершин — четыре. Граф является одним из хорошо укрытых кубических многогранных графов и одним из семи хорошо укрытых 3-связных кубических графов. Другими тремя хорошо укрытыми простыми выпуклыми многогранниками являются тетраэдр, треугольная призма и пятиугольная призма[4][5].

Граф Дюрера является гамильтоновым с LCF-обозначением [-4,5,2,-4,-2,5;-][6]. Точнее, граф имеет ровно шесть гамильтоновых циклов, каждая пара которых может быть отображена в любую другую симметриями графа[7].

Remove ads

Симметрии

Группа автоморфизмов как графа Дюрера, так и многогранника Дюрера (в виде усечённого куба или в форме, представленной Дюрером) изоморфна диэдрической группе порядка 12.

Галерея

Примечания

Литература

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads