Лучшие вопросы
Таймлайн
Чат
Перспективы
Граф Мёбиуса — Кантора
симметричный двудольный кубический граф с 16 вершинами и 24 рёбрами Из Википедии, свободной энциклопедии
Remove ads
Граф Мёбиуса — Кантора — симметричный двудольный кубический граф с 16 вершинами и 24 рёбрами, названный в честь Августа Фердинанда Мёбиуса и Зелигмана Кантора (1857—1903). Его можно определить как обобщённый граф Петерсена , то есть он образован вершинами восьмиугольника, соединёнными с восьмиугольной звездой, в которой каждая точка соединена с третьей по счёту точкой.
Remove ads
Конфигурация Мёбиуса — Кантора

Мёбиус в 1828 году[1] поставил вопрос о существовании пары многоугольников с сторонами в каждом, обладающих свойством, что вершины одного многоугольника лежат на прямых, проходящих через стороны другого, и наоборот. Если такая пара существует, то вершины и стороны этих многоугольников должны образовывать проективную конфигурацию. Для не существует решения на евклидовой плоскости, но в 1882 году Кантор[2] нашёл пару многоугольников такого типа в обобщении задачи, в котором точки и рёбра принадлежат комплексной проективной плоскости, то есть в решении Кантора координатами вершин многоугольника являются комплексные числа. Решение Кантора для — пара взаимно вписанных четырёхугольников на комплексной проективной плоскости, называется конфигурацией Мёбиуса — Кантора. Граф Мёбиуса — Кантора получил своё имя от конфигурации Мёбиуса — Кантора, поскольку он является графом Леви этой конфигурации. Граф имеет одну вершину для каждой точки конфигурации и по точке для каждой тройки, а рёбра соединяют две вершины, если одна вершина соответствует точке, а другая — тройке, содержащей эту точку.
Remove ads
Связь с гиперкубом
Граф Мёбиуса — Кантора является подграфом четырёхмерного графа гиперкуба и образован путём удаления восьми рёбер из гиперкуба[3]. Поскольку гиперкуб является графом единичных расстояний, граф Мёбиуса — Кантора можно тоже изобразить на плоскости со всеми сторонами единичной длины, хотя такое представление приведёт к появлению перекрещивающихся рёбер.
Топология
Суммиров вкратце
Перспектива

Граф Мёбиуса — Кантора нельзя вложить в плоскость без пересечений, его число скрещиваний равно 4, и он является наименьшим кубическим графом с таким числом скрещиваний[4]. Кроме того, граф даёт пример графа, все подграфы которого имеют число пересечений на два и более отличающихся от числа пересечений самого графа[5]. Однако он является тороидальным — существует его вложение в тор, при котором все его грани являются шестиугольниками[6]. Двойственный граф этого вложения — это граф гипероктаэдра .
Существует даже более симметричное вложение графа Мёбиуса — Кантора в двойной тор[англ.], являющееся правильной картой и имеющее шесть восьмиугольных граней, в котором все 96 симметрий графа можно осуществить как симметрии вложения[7]. 96-элементную группу симметрии вложения имеет граф Кэли, который может быть вложен в двойной тор. В 1984 году показано, что это единственная группа рода два[8].
Скульптура Девитта Годфри (DeWitt Godfrey) и Дуэйна Мартинеса (Duane Martinez) в виде двойного тора с вложенным графом Мёбиуса — Кантора выставлялась в Техническом музее Словении на шестой Словенской международной конференции по теории графов в 2007 году. В 2013 году вращающаяся версия скульптуры была выставлена в Колгейтском университете.
Граф Мёбиуса — Кантора допускает вложение в тройной тор[англ.] (тор третьего рода), которое даёт правильную карту, имеющую четыре 12-угольных грани[6].
В 2004 году в рамках исследования возможных химических углеродных структур, изучено семейство всех вложений графа Мёбиуса — Кантора в двумерные многообразия, в результате показано, что существует 759 неэквивалентных вложений[9].
Remove ads
Алгебраические свойства
Суммиров вкратце
Перспектива
Группа автоморфизмов графа Мёбиуса — Кантора — это группа порядка 96[10]. Она действует транзитивно на вершины и на рёбра, поэтому граф Мёбиуса — Кантора является симметричным. У него есть автоморфизмы, которые переводят любую вершину в любую другую и любое ребро в любое другое. Согласно списку Фостера граф Мёбиуса — Кантора является единственным симметричным графом с 16 вершинами и наименьшим кубическим симметричным графом, который не является дистанционно-транзитивным[11]. Граф Мёбиуса — Кантора является также графом Кэли.
Обобщённый граф Петерсена является вершинно-транзитивным в том и только в том случае, когда и , или когда , и рёберно-транзитивным только в следующих семи случаях: [12]. Таким образом, граф Мёбиуса — Кантора является одним из этих семи ребёрно-транзитивных обобщённых графов Петерсена. Его симметричное вложение в двойной тор — одна из семи правильных кубических карт, для которых общее число вершин вдвое больше числа вершин граней[13]. Среди семи симметричных обобщённых графов Петерсена находятся кубический граф , граф Петерсена , граф додекаэдра , граф Дезарга и граф Науру .
Характеристический многочлен графа Мёбиуса — Кантора равен:
Remove ads
Примечания
Ссылки
Внешние ссылки
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads