Лучшие вопросы
Таймлайн
Чат
Перспективы
Тор (поверхность)
поверхность вращения в форме бублика Из Википедии, свободной энциклопедии
Remove ads
Тор (тороид) — поверхность вращения, получаемая вращением образующей окружности вокруг оси, лежащей в плоскости этой окружности и не пересекающей её[1].

Обобщённо, тор — топологическое пространство или гладкое многообразие, эквивалентное такой поверхности.
Иногда не требуют, чтобы ось вращения не пересекала образующую окружность. В таком случае, если ось вращения пересекает образующую окружность (или касается её), то тор называют закрытым, иначе открытым[2].
Понятие тора определяется и в многомерном случае. Тор является примером коммутативной алгебраической группы и примером группы Ли.
Remove ads
История
Тороидальная поверхность впервые была рассмотрена древнегреческим математиком Архитом при решении задачи об удвоении куба. Другой древнегреческий математик, Персей, написал книгу о спирических линиях — сечениях тора плоскостью, параллельной его оси.
Ось тора
Ось вращения может пересекать окружность, касаться её и располагаться вне окружности. В первых двух случаях тор называется закрытым, в последнем — открытым, или кольцом[2].
- Изменение расстояния до оси вращения
Окружность, состоящая из центров образующих окружностей, называется направляющей окружностью.
Топологические свойства
Тор является поверхностью рода 1 (сфера с одной ручкой). Тор является компактным топологическим пространством.
Тор имеет характеристику Эйлера — Пуанкаре χ=0.
Уравнения
Суммиров вкратце
Перспектива

Параметрическое
Уравнение тора с расстоянием от центра образующей окружности до оси вращения R и с радиусом образующей окружности r может быть задано параметрически в виде:
Алгебраическое
Непараметрическое уравнение в тех же координатах и с теми же радиусами имеет четвёртую степень:
Такая поверхность имеет четвёртый порядок.
Существуют другие поверхности, диффеоморфные тору, имеющие другой порядок.
- , где x, y комплексные числа. Комплексная эллиптическая кривая, кубическая поверхность.
- Вложение тора в 4-мерное пространство. Это поверхность 2 порядка. Кривизна этой поверхности равна 0.
Remove ads
Кривизна поверхности
![]() | Этот раздел нужно дополнить. |

Тор в трёхмерном пространстве имеет точки положительной и отрицательной кривизны. В соответствии с теоремой Гаусса-Бонне интеграл кривизны по всей поверхности тора равен нулю.
Групповая структура
Это пустой раздел, который еще не написан. |
Свойства


- Площадь поверхности тора как следствие из первой теоремы Гюльдена: .
- Объём тела, ограничиваемого тором (полнотория), как следствие из второй теоремы Паппа — Гюльдена: .
- Тор с вырезанным диском («проколотый») можно вывернуть наизнанку непрерывным образом (топологически, то есть серией диффеоморфизмов). При этом две пересекающиеся перпендикулярно окружности на нём («параллель» и «меридиан») поменяются местами.[3]
- Два таких «дырявых» тора, сцепленных между собой, можно продеформировать так, чтобы один из торов «проглотил» другой.[4]
- Минимальное число цветов, необходимое для раскрашивания участков тора так, чтобы соседние были разного цвета, равно 7. См. также Проблема четырёх красок.
Сечения


- При сечении тора бикасательной плоскостью получающаяся кривая четвёртого порядка оказывается вырожденной: пересечение является объединением двух окружностей, называемых окружностями Вилларсо.
- В частности, открытый тор может быть представлен как поверхность вращения окружности, зацепленной за ось вращения
- Одно из сечений открытого тора — лемниската Бернулли, другие кривые линии являются графическими линиями и называются кривыми Персея[5] (спирическими линиями, сечениями тора плоскостью, параллельной его оси)
- Некоторые пересечения поверхности тора плоскостью внешне напоминают эллипс (кривую 2-го порядка). Получаемая таким образом кривая выражается алгебраическим уравнением 4-го порядка[6].
Remove ads
Обобщения
Многомерный тор
![]() | Этот раздел нужно дополнить. |

Обобщением 2-мерного тора является многомерный тор (также n-тор или гипертор):
Поверхность вращения
Тор — частный случай поверхности вращения.
Remove ads
См. также
Примечания
Литература
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads