Лучшие вопросы
Таймлайн
Чат
Перспективы

Квазинормальная подгруппа

Из Википедии, свободной энциклопедии

Remove ads

Квазинормальная подгруппа — это подгруппа особого типа, коммутирующая со всеми остальными подгруппами данной группы, относительно поэлементного произведения.

Квазигамильтонова группа — это группа, все подгруппы которой квазинормальны.

Примеры

Свойства

Квазинормальная подгруппа обладает модулярным свойством в решётке подгрупп[1]

В конечной Т-группе отношение квазинормальности на множестве всех её подгрупп транзитивно[2]

Подгруппа конечной группы является квазинормальной, тогда и только тогда, когда она является элементом субнормального ряда подгрупп и обладает модулярным свойством в решётке подгрупп[1][3]

Если A — циклическая квазинормальная подгруппа группы G, то [A, G] — абелева группа.[4]

Если A — абелева квазинормальная подгруппа группы G, а n — натуральное число, нечетное или делящееся на 4, то  — квазинормальная подгруппа группы G.[4]

Конечная группа квазигамильтонова тогда и только тогда, когда она нильпотентна и ее силовские подгруппы имеют модулярные групповые структуры.[5]

Remove ads

Примечания

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads