Лучшие вопросы
Таймлайн
Чат
Перспективы

Ковариантный метод

Из Википедии, свободной энциклопедии

Remove ads

Ковариа́нтный метод — подход в теоретической физике, разработанный Ф. И. Фёдоровым на основе линейной алгебры и прямого тензорного исчисления. Получил распространение в приложении к описанию оптических явлений и, частично, в физике элементарных частиц.

Суть метода

Суммиров вкратце
Перспектива

Ковариантный метод — лаконичная математическая формулировка физических теорий, использующая тензорную алгебру. Основными областями применения метода являются теоретическая оптика и акустика. Ковариантный метод существенно упрощает громоздкие выражения, появляющиеся при описании распространения полей в сложных (анизотропных, гиротропных, бианизотропных) средах. С помощью данного метода вводится удобная в приложениях векторная параметризация группы Лоренца, которая может быть далее применена в теории элементарных частиц.

В общем случае электромагнитные и акустические поля описываются векторами. Если пространство, в котором распространяется волна, обладает симметрией, то вектор поля и тензоры, описывающие среду, могут быть заданы своими компонентами в некоторой системе координат, согласованной с симметрией системы, что обычно и применяется в оптике и акустике. Однако векторы и тензоры могут быть записаны безотносительно системы координат, просто как геометрические объекты, что и применяется в ковариантном методе. По этой причине ковариантный метод называют также бескоординатным (при решении задачи не задается конкретная система координат). Описание распространения волны в кристалле сводится к выполнению операций над тензорами и векторами, для чего разработаны методы, упрощающие работу с тензорами и явно использующие их инварианты (в трёхмерном пространстве для тензоров второй валентности это след, определитель тензора и определитель взаимного тензора). Симметрии кристалла в таком подходе выражаются как определённые соотношения между инвариантами, а описывающие кристалл тензоры имеют удобные выражения.

Remove ads

Виды тензоров

Суммиров вкратце
Перспектива

Основными видами тензоров трехмерного пространства, используемыми в ковариантном методе, являются

единичный тензор ,

проекционный оператор на направление единичного вектора диада ,

проекционный оператор на плоскость, ортогональную единичному вектору ,

— тензор , дуальный вектору  : .

Оптические кристаллы могут быть изотропными, одноосными или двуосными. Анизотропия кристаллов определяется тензором диэлектрической проницаемости, который может быть представлен в аксиальном виде:

1. изотропная среда ,

2. одноосный кристалл (вектор задает направление оптической оси),

3. двуосный кристалл .

Векторы, задающие направления оптических осей полностью определяются через собственные значения и главные оси соответствующих тензоров [1], [3], [4].

Remove ads

Векторная параметризация группы Лоренца

Суммиров вкратце
Перспектива

Общая группа Лоренца может быть представлена как группа преобразований вида

,

удовлетворяющих условиям , . Матрица Лоренца может быть параметризована одним трехмерным комплексным вектором и имеет вид

,

где и — четырехмерные антисимметричные матрицы, которые ставятся в соответствие комплексному трёхмерному вектору . Указанные выше матрицы определяются вектором и комплексно сопряженным к нему вектором соответственно и равны

.

Для вектор-параметров группы Лоренца справедлив следующий закон композиции

.

Векторная параметризация может быть введена и для группы вращений, причем в этом случае вектор-параметры будут принадлежать действительному трёхмерному пространству, а закон их композиции будет тем же.

Remove ads

Применение метода

Ковариантный метод позволяет производить вычисления с векторами и тензорами в их прямой форме, не прибегая к индексной записи. При этом достигается компактность и простота получаемых выражений.

Например, критерии поляризации имеют следующий вид:

- круговая поляризация

- линейная поляризация

существует несколько вариантов критерия круговой и линейной поляризации [3]. Если ни один из приведенных критериев не выполняется, мы имеем дело с общим случаем эллиптической поляризации, при этом выясняются размеры и ориентация осей эллипса поляризации в гораздо более компактной форме, нежели это делается в декартовой системе координат [7].

Remove ads

Дополнительно

  1. Сотрудники кафедры теоретической физики БГУ занимаются обобщением ковариантного метода. Такой обобщенный метод был назван операторным [6], так как основан на применении эволюционных операторов, связывающих поля в двух точках пространства. Операторный метод применим для описания слоистых систем (в том числе с цилиндрической и сферической симметрией).
  2. Ковариантный метод успешно использовался не только в работах белорусских физиков, но и в исследованиях сотрудников Института кристаллографии АН СССР[1][2].
Remove ads

См. также

Примечания

Литература

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads