Лучшие вопросы
Таймлайн
Чат
Перспективы

Нормальная форма Смита

Из Википедии, свободной энциклопедии

Remove ads

Нормальная форма Смита — это диагональная (не обязательно квадратная) матрица над областью главных идеалов, каждый следующий диагональный элемент которой делится на предыдущий. Любую матрицу над областью главных идеалов можно привести к нормальной форме Смита путём умножения слева и справа на обратимые матрицы[1].

Формулировка

Для любой матрицы размера над областью главных идеалов существуют такие обратимые над матрицы и , что , где делится на . Здесь обозначает матрицу размера с указанными диагональными элементами и нулями на остальных позициях.

Remove ads

Применения

Из теоремы о нормальной форме Смита следует известная теорема о структуре конечнопорожденных модулей над областями главных идеалов. В частности, если  — кольцо целых чисел, то из нормальной формы Смита получается теорема о строении конечнопорожденных абелевых групп, а если  — кольцо многочленов над алгебраически замкнутым полем , то из нее можно вывести теорему о жордановой форме линейного оператора.

Remove ads

См. также

Примечания

Литература

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads