Лучшие вопросы
Таймлайн
Чат
Перспективы
Эрмитова нормальная форма
Из Википедии, свободной энциклопедии
Remove ads
Эрмитова нормальная форма — это аналог ступенчатого вида матрицы для матриц над кольцом целых чисел. В то время, как ступенчатый вид матрицы используется для решения систем линейных уравнений вида для , эрмитова нормальная форма может быть использована для решения линейных систем диофантовых уравнений, в которых подразумевается, что . Эрмитова нормальная форма используется в решении задач целочисленного программирования[1], криптографии[2] и общей алгебры[3].
Remove ads
Определение
Суммиров вкратце
Перспектива
Матрица является эрмитовой нормальной формой целочисленной матрицы если есть унимодулярная матрица такая что и удовлетворяет следующим ограничениям[4][5][6]:
- является верхне-треугольной, то есть, если и любая строка, целиком состоящая из нулей находится ниже всех остальных.
- Ведущий элемент любой ненулевой строки всегда положителен и лежит правее ведущего коэффициента строки над ней.
- Элементы под ведущими равны нулю, а элементы над ведущими неотрицательны и строго меньше ведущего.
Некоторые авторы в третьем условии требуют, чтобы элементы были неположительными[7][8] или вообще не накладывают на них знаковых ограничений[9].
Remove ads
Существование и единственность эрмитовой нормальной формы
Суммиров вкратце
Перспектива
Эрмитова нормальная форма существует и единственна у любой целочисленной матрицы [5][10][11].
Примеры
В примерах ниже матрица является эрмитовой нормальной формой матрицы , а соответствующей унимодулярной матрицей является матрица такая что .
Алгоритмы
Первые алгоритмы вычисления эрмитовой нормальной формы датируются 1851 годом. При этом первый алгоритм, работающий за строго полиномиальное время был разработан лишь в 1979 году[12]. Один из широко используемых классов алгоритмов для приведения матрицы к эрмитовой нормальной форме основан на модифицированном методе Гаусса[10][13][14]. Другим распространённым методом вычисления эрмитовой нормальной формы является LLL-алгоритм[15][16].
Remove ads
Применения
Вычисления в решётках
Обычно решётки в имеют вид , где . Если рассмотреть матрицу , чьи строки составлены из векторов , то её эрмитова нормальная форма будет задавать некоторый единственным образом определённый базис решётки. Данное наблюдение позволяет быстро проверять, совпадают ли решётки, порождённые строками матриц и , для чего достаточно проверить, что у матриц совпадают их эрмитовы нормальные формы. Аналогичным образом можно проверить, является ли решётка подрешёткой решётки , для чего достаточно рассмотреть матрицу , полученную из объединения строк и . В такой постановке является подрешёткой если и только если совпадают эрмитовы нормальные формы и [17].
Диофантовы линейные уравнения
Система линейных уравнений имеет целочисленное решение если и только если система имеет целочисленное решение, где — эрмитова нормальная форма матрицы [10]:55.
Remove ads
Реализация
Вычисление эрмитовой нормальной формы реализовано во многих системах компьютерной алгебры:
См. также
Примечания
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads