Лучшие вопросы
Таймлайн
Чат
Перспективы

Ортополюс

точка, определённая для треугольника и прямой линии Из Википедии, свободной энциклопедии

Ортополюс
Remove ads
Remove ads

Ортополюс системы, состоящей из треугольника ABC и прямой линии (на рис. справа этой прямой соответствует прямая A  C ) в данной плоскости, является точкой, определяемой следующим образом.[1]. Пусть A , B , C  — основания перпендикуляров, проведенных к прямой из вершин треугольника соответственно A, B, C. Пусть A , B , C  — основания перпендикуляров, проведенных к соответствующим противоположным сторонам A, B, C указанного треугольника или к продолжениям этих сторон. Тогда три прямые линии A  A , B  B , C  C , пересекутся в одной точке — в ортополюсе H.[2] Благодаря своим многочисленным свойствам[3] ортополюсы стали предметом серьезного изучения [4]. Изучались некоторые ключевые понятия — определение линий, имеющих данный ортополюс [5] и ортополюсные окружности.[6]

Thumb
Ортополюс H системы, состоящей из треугольника ABC и прямой линии (она изображена в виде прямой A  C )
Remove ads

Свойства

Суммиров вкратце
Перспектива

Замечание

Везде ниже в тексте ортополюсу P соответствует ортополюс H на рис. справа, а прямой ортополюса P на том же рис. соответствует прямая A  C .

Ортополюс и ортоцентр

  • Если проходит через ортоцентр Q треугольника, то точка, расположенная на продолжении отрезка PQ, соединяющего ортополюс с ортоцентром, по другую сторону на расстоянии, равном PQ, лежит на окружности Эйлера этого треугольника.[7]
  • Ортоцентр Q треугольника является ортополюсом его сторон относительно самого треугольника.[8]

Ортополюс как радикальный центр

  • Ортополюс P прямой линии треугольника является радикальным центром трех окружностей, которые касаются прямой линии и имеют центры в вершинах антидополнительного треугольника по отношению к данному треугольнику.[9]

Ортополюс и описанная окружность

Ортополюс и прямая Симсона

  • Если ортополюс лежит на прямой Симсона, то его линия перпендикулярна ей.[3]
  • Если прямая ортополюса является прямой Симсона точки P, то точка P называется полюсом прямой Симсона ℓ[3]

Ортополюсы параллельных прямых

  • Если прямая ортополюса перемещается параллельно самой себе, то ее ортополюс смещается вдоль линии, перпендикулярной , на расстояние, равное перемещению.[3]
  • Ортополюсы двух параллельных прямых лежат на общем для них перпендикуляре к двум прямым на расстоянии, равном расстоянию между прямыми.[12]

Ортополюсы троек вершин четырехугольника

Если задана фиксированная прямая линия , и выбрана любая из трех вершин четырехугольника, то все ортополюсы данной прямой линии относительно всех таких треугольников лежат на одной прямой. Эта линия называется ортополярной линией данной линии относительно четырехугольника.[13]

Коника (эллипс), порожденная ортополюсами

  • Известно (см. [14][15]), что нахождение для данного фиксированного треугольника всех ортополюсов для всех прямых , проходящих через неподвижную точку , порождает конику, которая всегда является эллипсом, касательным в 3 точках к дельтоиде Штейнера данного треугольника. Коника вырождается в прямую (отрезок), когда точка находится на описанной окружности треугольника . Эта коника обобщает свойство, обсуждаемое в статье [16], согласно которому для точки , совпадающей с центром описанной окружности треугольника, коника становится окружностью Эйлера [17]
  • Замечание. В данной статье в параграфе "Ортополюс и описанная окружность" упомянутое выше свойство звучит так:
Если прямая ортополюса проходит через центр описанной окружности треугольника, то сам ортополюс лежит на окружности Эйлера этого треугольника.[3][18]

Точки Фейербаха , как ортополюсы

В англоязычной литературе 4 центра 4 окружностей: 1 вписанной и 3 вневписанных окружностей с центрами соответственно , касающиеся соответственно 3 разных сторон треугольника или их продолжений, - называют 4 трехкасательными центрами треугольника (the tritangent centers) [19]. Это замечание важно для следующего утверждения.

Точки Фейербаха треугольника являются ортополюсами данного треугольника, если в качестве прямых для этих ортополюсов взяты диаметры описанной окружности, проходящие через соответствующие трехкасательные центры [20]. Последнее утверждение есть следствие утверждения, указанного ниже.

Точка Фейербаха для данной вписанной или вневписанной окружности (трехкасательная окружность - по-английски "a tritangent circle ") является точкой пересечения 2 прямых Симсона, построенных для концов диаметра описанной окружности, проходящего через соответствующий центр вписанной или вневписанной окружности. Таким образом, точка Фейербаха может быть построена без использования соответствующей вписанной или вневписанной окружности и касающейся ее окружности Эйлера[21].

Обобщение

Существование ортополюса вытекает из более общей теоремы, так называемой теоремы Штейнера об ортологических треугольниках [22].

Теорема Штейнера об ортологичных треугольниках утверждает (см. Теорема Штейнера об ортологических треугольниках), что, если Δ ABC ортологичен Δ A'B'C' , то это эквивалентно тому, что Δ A'B'C' ортологичен Δ ABC. В случае ортополюса проекции вершин треугольника ABC на прямую линию — точки A' , B' , C' — можно считать вершинами вырожденного треугольника, а параллельные перпендикуляры — пересекающимися в бесконечно удаленной точке.

  • Треугольники ортологические — треугольники ABC и A1B1C1, для которых перпендикуляры, опущенные из точек A, B и C на прямые B1C1, C1A1 и A1B1 пересекаются в одной точке. В этом случае и перпендикуляры, опущенные из точек A1, B1 и C1 на прямые BC, CA и AB также пересекаются в одной точке.
Remove ads

История

Ортополюс был открыт математиком М. Сунсом (M. Soons) в 1886-м году в статье на с. 57 в бельгийском научном журнале по элементарной математике Mathesis (journal)[англ.], основанным в 1881 году Полем Мансионом (Paul Mansion) и Жозефом Жаном Батистом Нойбергом (Joseph Jean Baptiste Neuberg), а сам термин ортополюс (orthopole) предложен упомянутым Нойбергом в журнале "Mathesis" за 1911-й год на с. 244 согласно источникам[23],[24]

Замечание

Данное в самом начале определение ортополюса в книге Ефремова называется теоремой Сунса [25].

Remove ads

См. также

Полюс и поляра

Ссылки

Loading content...

Литература

Loading content...
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads