Лучшие вопросы
Таймлайн
Чат
Перспективы
Полноторие
Трёхмерная фигура Из Википедии, свободной энциклопедии
Remove ads
Полното́рие (полното́рий) — трёхмерная фигура, ограниченная тором, а также топологическое пространство, гомеоморфное этой фигуре, то есть прямое произведение двумерного диска и окружности. Неформально, полноторие — бублик, тогда как тор — только его поверхность (пустотелая камера колеса).


Remove ads
Свойства
- Полноторие может быть получено как фигура вращения круга радиуса вокруг оси, лежащей в плоскости этого круга, находящийся на расстоянии от его центра.
- Объём полнотория как следствие из второй теоремы Гульдина: , где — радиус образующего круга, а — расстояние от центра образующего круга до оси вращения (см. рисунок).
- Полноторие является трёхмерным компактным многообразием с краем. Это многообразие является связным и ориентируемым.
- Полноторие гомотопически эквивалентно окружности . Отсюда следует, что полноторие и окружность имеют одинаковые фундаментальные группы и группы гомологий:
Remove ads
Литература
- Фоменко А. Т. Наглядная геометрия и топология — М., 1992.
- Фоменко А. Т., Фукс Д. Б. Курс гомотопической топологии.— М.: Наука, 1989.
![]() | Для улучшения этой статьи желательно: |
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads