Лучшие вопросы
Таймлайн
Чат
Перспективы
Фундаментальная группа
определённая группа, которая сопоставляется топологическому пространству Из Википедии, свободной энциклопедии
Remove ads
Фундамента́льная гру́ппа — одна из простейших конструкций в алгебраической топологии. Сопоставляется группа всякому связному топологическому пространству. Для подмножеств плоскости эта группа измеряет количество «дырок». Наличие «дырки» определяется невозможностью непрерывно продеформировать (стянуть) некоторую замкнутую кривую в точку.
Фундаментальная группа пространства с отмеченной точкой обычно обозначается или , последнее обозначение применимо для связных пространств. Тривиальность фундаментальной группы обычно записывается как , хотя обозначение более уместно.
Remove ads
Определение
Пусть — топологическое пространство с отмеченной точкой . Рассмотрим множество петель в из ; то есть множество непрерывных отображений , таких что . Две петли и считаются эквивалентными, если они гомотопны друг другу в классе петель, то есть найдется соединяющая их гомотопия , удовлетворяющая свойству . Соответствующие классы эквивалентности (обозначаются ) называются гомотопическими классами. Произведением двух петель называется петля, определяемая их последовательным прохождением:
Произведением двух гомотопических классов и называется гомотопический класс произведения петель. Можно показать, что он не зависит от выбора петель в классах. Множество гомотопических классов петель с таким произведением становится группой. Эта группа и называется фундаментальной группой пространства с отмеченной точкой и обозначается .
Remove ads
Комментарии
- Про можно думать как о паре пространств .
- Единицей группы является класс тождественной, или неподвижной петли, обратным элементом — класс петли, пройденной в обратном направлении.
- Если — линейно связное пространство, то с точностью до изоморфизма фундаментальная группа не зависит от отмеченной точки. Поэтому для таких пространств можно писать вместо не боясь вызвать путаницу. Однако для двух точек канонический изоморфизм между и существует лишь если фундаментальная группа абелева.
Remove ads
Связанные определения
- Каждое непрерывное отображение пунктированных пространств индуцирует гомоморфизм , определяемый формулой . Таким образом, взятие фундаментальной группы вместе с описанной операцией образует функтор .
- Пространство называется односвязным, если оно линейно связно и группа тривиальна (состоит только из единицы).
Remove ads
Примеры
- В есть только один гомотопический класс петель. Следовательно, фундаментальная группа тривиальна, . То же верно и для любого пространства — выпуклого подмножества .
- В окружности , каждый гомотопический класс состоит из петель, которые навиваются на окружность заданное число раз, которое может быть положительным или отрицательным в зависимости от направления. Следовательно, фундаментальная группа окружности изоморфна аддитивной группе целых чисел .
- Фундаментальная группа -мерной сферы тривиальна при всех .
- Фундаментальная группа восьмёрки неабелева — это свободное произведение . Справедлив более общий результат, следующий из теоремы ван Кампена: если и — линейно связные пространства и локально односвязны, то фундаментальная группа их букета (склейки по выделенной точке) изоморфна свободному произведению их фундаментальных групп:
- Фундаментальная группа плоскости c выколотыми точками — свободная группа с порождающими.
Remove ads
Свойства
Суммиров вкратце
Перспектива
Фундаментальная группа пространства зависит только от его гомотопического типа. Обратное верно для линейно связных асферических пространств (пространство Эйленберга — Маклейна).
Если — ретракт , содержащий отмеченную точку , то гомоморфизм , индуцированный вложением , инъективен. В частности, фундаментальная группа компоненты линейной связности , содержащей отмеченную точку, изоморфна фундаментальной группе всего . Если — строгий деформационный ретракт , то является изоморфизмом.
сохраняет произведение: для любой пары топологических пространств с отмеченными точками и существует изоморфизм:
естественный по и .
Теорема ван Кампена: Если — объединение линейно связных открытых множеств , каждое из которых содержит отмеченную точку , и если каждое пересечение линейно связно, то гомоморфизм , индуцированный вложениями , сюрьективен. Кроме того, если каждое пересечение линейно связно, то ядро гомоморфизма — это наименьшая нормальная подгруппа , содержащая все элементы вида (где индуцирован вложением ), а потому индуцирует изоморфизм (первая теорема об изоморфизме).[1] В частности, сохраняет копроизведения: естественно по всем . Случай двух : условие для тройных пересечений становится излишним, и получается, что , что является ограниченной (случаем линейно связного ) формой сохранения толчков.
Фундаментальная группа топологической группы абелева, как демонстрирует аргумент Экманна-Хилтона.
Свободные группы и только они могут быть реализованы как фундаментальные группы графов (действительно, стягивание остовного дерева в точку реализует гомотопическую эквивалентность графа и букета окружностей, также можно применить теорему ван Кампена).
Произвольная группа может быть реализована как фундаментальная группа двумерного клеточного комплекса.
Произвольная конечно заданная группа может быть реализована как фундаментальная группа замкнутого 4-мерного многообразия.
Фундаментальная группа пространства действует сдвигами на универсальном накрытии этого пространства (если универсальное накрытие определено).
Remove ads
Вариации и обобщения
- Фундаментальная группа является первой из гомотопических групп.
- Фундаментальным группоидом[англ.] пространства называют группоид , объектами которого являются точки , а морфизмами — гомотопические классы путей с композицией путей. При этом , и если линейно связно, то вложение является эквивалентностью категорий.
Remove ads
Примечания
Литература
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads