Лучшие вопросы
Таймлайн
Чат
Перспективы
Постоянные Ламе
Из Википедии, свободной энциклопедии
Remove ads
Постоя́нные Ламе́[1][2], упругие постоянные Ламе[3][4][5], коэффициенты Ламе[6][7][8], константы Ламе[9][10], модули упругости Ламе[11] (названные в честь французского математика Габриэля Ламе) — материальные константы[нем.], характеристики упругих деформаций изотропных твёрдых тел, принадлежащие к множеству модулей упругости.
В линейной теории упругости закон Гука выражает линейную зависимость между тензором деформации ε и тензором напряжений σ в упругой среде:
Здесь λ называется первым коэффициентом Ламе, а μ — вторым коэффициентом Ламе или модулем сдвига.
Remove ads
Определение через энергию
Суммиров вкратце
Перспектива
Энергия упругой деформации является квадратичной формой тензора деформации. Из тензора второго ранга можно составить две разные симметричные скалярные комбинации второй степени. Такими скалярами являются и .
Вклад упругих деформаций в свободную энергию, таким образом, является линейной комбинацией этих двух скаляров с коэффициентами, которые называются параметрами Ламе.
- .
Remove ads
Связь с другими модулями упругости
Параметр Ламе μ совпадает с модулем сдвига.
Модуль всестороннего сжатия К выражается через параметры Ламе следующим образом:
Через модуль Юнга E и коэффициент Пуассона ν параметры Ламе выражаются следующим образом:
Remove ads
Литература
- Ландау Л.Д., Лифшиц Е.М. Теоретическая физика, т.VII. Теория упругости. — Наука, 1987.
Примечания
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads