Лучшие вопросы
Таймлайн
Чат
Перспективы

Построение Витхоффа

способ построения однородной многогранной или плоской черепицы Из Википедии, свободной энциклопедии

Построение Витхоффа
Remove ads

Построение Витхоффа, или конструкция Витхоффа[1] — метод построения однородных многогранников или мозаик на плоскости. Метод назван по имени математика В. А. Витхоффа[англ.]. Часто метод построения Витхоффа называют калейдоскопным построением.

Thumb
Построения Витхоффа с тремя зеркалами, образующими прямоугольный треугольник.

Построение

Суммиров вкратце
Перспектива

Построение основано на идее мозаик на сфере с использованием сферических треугольников — см. треугольники Шварца. Это построение использует отражения относительно сторон треугольника подобно калейдоскопу. Однако, в отличие от калейдоскопа, отражения не параллельны, а пересекаются в одной точке. Многократные отражения образуют несколько копий треугольника. Если углы сферического треугольника выбраны правильно, треугольники покрывают сферу мозаикой один или более раз.

Если поместить точку в подходящее место внутри сферического треугольника, окружённого зеркалами, можно добиться, чтобы отражения этой точки дали однородный многогранник. Для сферического треугольника ABC имеются четыре позиции, которые дают однородный многогранник:

  1. Точка расположена в вершине A. Она даёт многогранник с символом Витхоффа a|b c, где a равен π, делённому на угол треугольника в вершине A. Аналогично для b и c.
  2. Точка расположена на отрезке AB в основании биссектрисы угла в вершине C. Она даёт многогранник с символом Витхоффа a b|c.
  3. Точка расположена в инцентре треугольника ABC. Она даёт многогранник с символом Витхоффа a b c|.
  4. Точка расположена таким образом, что при вращении её вокруг вершин треугольника на удвоенный угол при этих вершинах, она перемещается на одно и то же расстояние. Используются только чётные отражения. Многогранник имеет символ Витхоффа |a b c.

Процесс, в общем случае, применим и для получения правильных политопов в пространствах более высоких размерностей, включая 4-мерные однородные политопы[англ.].

Примеры
Thumb
Thumb
Шестиугольная призма строится как из семейства (6 2 2), так и из семейства (3 2 2).
ThumbThumb
Обрезанная квадратная мозаика[англ.] строится с помощью двух различных позиций в семействе (4 4 2).
Remove ads

Невитхоффово построение

Однородные многогранники, которые нельзя построить с помощью зеркального построения Витхоффа, называются невитхоффовыми. Их, в общем случае, можно получить из витхоффовых построений либо альтернацией[англ.] (удаление вершин через одну) или вставкой чередующихся рядов некоторых фигур. Оба типа таких фигур обладают вращательной симметрией. Иногда обрезки считаются витхоффовыми, даже если они могут быть получены путём альтернации обрезанных со всех сторон фигур.

Примеры
Thumb
Шестиугольная антипризма строится с помощью альтернации двенадцатиугольной призмы[англ.].
Thumb
Удлинённая треугольная мозаика?! строится путём чередования строк квадратной мозаики и треугольной мозаики.
Thumb
Большой биромбоикосододекаэдр[англ.] является единственным невитхоффовым однородным многогранником.
Remove ads

См. также

Примечания

Литература

Ссылки

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads