Лучшие вопросы
Таймлайн
Чат
Перспективы
Правильный косой многогранник
Из Википедии, свободной энциклопедии
Remove ads
Правильный косой многогранник — это обобщение множества правильных многогранников, которое включает возможность непланарных граней или вершинных фигур. Коксетер рассматривал косые вершинные фигуры, которые создавали новые четырёхмерные правильные многогранники, а много позднее Бранко Грюнбаум рассматривал правильные косые грани.[1]
Описание правильных косых многогранников
Правильные косые многогранники не являются многогранниками в привычном смысле. Как Коксетер пишет в статье THE REGULAR SPONGES, OR SKEW POLYHEDRA (Правильные губки или косые многогранники), «Заполнение гранями отличается от конечных многогранников тем, что для них понятия внутри и снаружи совершено одно и то же. Такие заполнения помогают думать о многограннике как о поверхности, а не как о теле. Чтобы получить новые многогранники, нужно изловчиться, чтобы у вершины можно было разместить больше многоугольников, чем это разрешается кристаллографическими ограничениями (сумма углов при вершине меньше )». Чтобы достичь такого эффекта, Петри разрешил рёбрам идти в другую сторону от плоскости, что приводит к губкам, то есть поверхностям с незакрытыми дырами (дыра одного многогранника закрывается дырой другого, так что все они образуют бесконечную губку)[2].
Remove ads
История
Согласно Коксетеру в 1926 Джон Флиндерс Петри[англ.] обобщил концепцию пространственных многоугольников (непланарных многоугольников) [3] в правильные косые многогранники.
Коксетер предложил модифицированный символ Шлефли {l,m|n} для этих фигур, где {l,m} означает вершинную фигуру, m l-угольников вокруг вершины, а n — n-угольные дыры. Их вершинные фигуры являются пространственными многоугольниками, пробегающими зигзагом между двумя плоскостями.
Правильные косые многогранники, представленные символом {l,m|n}, удовлетворяют равенству:
- 2*cos(π/l)*cos(π/m)=cos(π/n)
Первое множество {l, m | n} представляет пять выпуклых платоновых тел и одно невыпуклое тело Кеплера — Пуансо:
Remove ads
Конечные правильные косые многогранники в 4–мерном пространстве
Суммиров вкратце
Перспектива
Коксетер также перечислил большое число конечных правильных многогранников в своей статье "regular skew polyhedra in three and four dimensions, and their topological analogues" (правильные косые многогранники в трёхмерном и четырёхмерном пространствах и их топологические аналоги).
Подобно как бесконечные косые многогранники представляют поверхность многообразия между ячейками выпуклых однородных сот[англ.], конечные виды представляют поверхности многообразия в ячейках однородного 4-мерного многогранника[англ.].
Многогранники вида {2p, 2q | r} связаны с группой Коксетера симметрии [(p,r,q,r)], которая сводится к линейной [r,p,r] при q, равном 2. Коксетер даёт этой симметрии обозначение [[(p,r,q,r)]+], которая, по его словам, изоморфна его абстрактной группе (2p,2q|2,r). Связанные соты имеют расширенную симметрию [[(p,r,q,r) ]] [4].
{2p,4|r} представляется {2p} гранями глубокоусечённого[англ.] {r,p,r} однородного 4-мерного многогранника[англ.], а {4,2p|r} представляется квадратными гранями струганного[англ.] {r,p,r} (рансифицировнного).
{4,4|n} образует n-n дуопризму, и, в частности, {4,4|4} укладывается в {4}x{4} тессеракт.
![]() |
![]() |
![]() |
{4,4| n} представляют квадратные грани дуопризм, с n-угольными гранями в качестве дыр и представляет тор Клиффорда и аппроксимацию двойного цилиндра | {4,4|6} имеет 36 квадратных граней и в перспективной проекции выглядит как квадраты, выбранные в 6,6 двойном цилиндре. | Кольцо из 60 треугольников образует правильный косой многогранник в подмножестве граней 600-ячейника. |
Последнее множество основано на дальнейших расширенных форм Коксетера {q1,m|q2,q3...} или с q2 неспецифицированным: {l, m |, q}.
Remove ads
См. также
- Пространственный многоугольник
- Косой бесконечногранник[англ.]
Примечания
Литература
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads