Лучшие вопросы
Таймлайн
Чат
Перспективы

Пятая проблема Гильберта

проблема Гильберта относится к теории топологических групп преобразований и групп Ли Из Википедии, свободной энциклопедии

Remove ads

Пятая проблема Гильберта — одна из проблем, поставленных Давидом Гильбертом в его докладе[1][2] на II Международном Конгрессе математиков в Париже в 1900 году. Пятая проблема Гильберта относится к теории топологических групп преобразований и групп Ли. Для важных частных случаев решения были получены в 1933 и 1934 годах, окончательно решена в 1952 году.

Формулировка проблемы

Суммиров вкратце
Перспектива

Топологическая группа преобразований состоит из топологической группы , топологического пространства и непрерывного действия группы на , которое является непрерывным отображением

обладающим следующими двумя свойствами:

  1. для всех , где  — единичный элемент из ,
  2. для всех и для всех .

Топологическая группа является группой Ли, если  — вещественно-аналитическое многообразие, а умножение  — вещественно-аналитическое отображение. Тогда по теореме о неявной функции отображение является вещественно-аналитическим. Если  — группа Ли,  — вещественно-аналитическое многообразие, а действие группы на  — вещественно-аналитическое, то имеем группу вещественно-аналитических преобразований.

Пусть  — локально евклидова топологическая группа. Тогда возникает вопрос о том, можно ли всегда снабдить вещественно-аналитической структурой такой, что умножение

будет вещественно-аналитическим? Этот вопрос, на который впоследствии был дан положительный ответ, и считается сегодня пятой проблемой Гильберта.[3]

Remove ads

Решение проблемы

Суммиров вкратце
Перспектива

Для компактных групп пятая проблема была решена фон Нейманом[4] в 1933 году. Для локально компактных коммутативных групп и некоторых других частных случаев проблему решил Понтрягин[3][5][6] в 1934 году. Эти доказательства были получены с помощью результата венгерского математика Альфреда Хаара[7], который построил на локально компактной топологической группе инвариантную меру[8].

Центральным пунктом общего доказательства оказался вопрос о существовании «малых» подгрупп в сколь угодно малой окрестности единицы (кроме самой единицы). Группы Ли таких подгрупп не имеют. Значительный вклад в решение внёс Глизон (Глисон)[9], доказавший, что каждая конечномерная локально компактная топологическая группа , которая не имеет малых подгрупп, является группой Ли.

Окончательное решение получено в 1952 году Монтгомери и Циппин, которые доказали, что у локально связной конечномерной локально компактной топологической группы нет малых подгрупп[10]. Поскольку всякая локально евклидова топологическая группа является локально связной, локально компактной и конечномерной, то из этих двух результатов вытекает следующее утверждение.

Теорема. Каждая локально евклидова группа является группой Ли.

Как впоследствии показал Глушков, данная теорема допускает обобщения[11].

Этот результат часто рассматривают как решение пятой проблемы Гильберта, но поставленный Гильбертом вопрос носил более широкий характер и касался групп преобразований для случая, когда многообразие не совпадает с [3][12].

Ответ на общий вопрос Гильберта в случае топологических непрерывных действий оказался отрицательным даже для тривиальной группы . Существуют топологические многообразия, не имеющие никакой гладкой структуры, а значит, не имеющие и вещественно-аналитической структуры[13].

Remove ads

Примечания

Литература

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads