Лучшие вопросы
Таймлайн
Чат
Перспективы

Рациональная поверхность

Из Википедии, свободной энциклопедии

Remove ads

Рациональная поверхность — это поверхность, бирационально эквивалентная проективной плоскости, или, другими словами, рациональное многообразие[англ.] размерности два. Рациональные поверхности являются простейшими из примерно 10 классов поверхностей классификации Энрикеса — Кодаиры комплексных поверхностей, и это были первые исследованные поверхности.

Структура

Любую неособую рациональную поверхность можно получить путём неоднократного раздутия[англ.] минимальной рациональной поверхности. Минимальными рациональными поверхностями являются проективная плоскость и поверхности Хирцебруха[англ.] Σr для r = 0 или r ≥ 2.

Инварианты: Все плюрироды[англ.] равны 0 и фундаментальная группа тривиальна.

Ромб Ходжа:

                 1
           0          0
      1        1+n        1,
           0          0
                 1

где n равен 0 для проективной плоскости, 1 для поверхностей Хирцебруха[англ.] и больше 1 для других рациональных поверхностей.

Группа Пикара[англ.] является нечётной унимодулярной решёткой I1,n, за исключением поверхностей Хирцебруха[англ.] Σ2m, для которых это чётная унимодулярная решётка II1,1.

Remove ads

Теорема Кастельнуово

Гвидо Кастельнуово доказал, что любая комплексная поверхность, для которой q и P2 (иррегулярность и второй плюрирод) равны нулю, является рациональной. Это используется в классификации Энрикеса — Кодаиры для распознавания рациональных поверхностей. Зарисский[1] доказал, что теорема Кастельнуово верна также для полей положительной характеристики.

Из теоремы Кастельнуово следует также, что любая унирациональная[англ.] комплексная поверхность рациональна. Большинство унирациональных комплексных многообразий размерности 3 и выше не являются рациональными. Для характеристики p > 0 Зарисский[1] нашёл пример унирациональных поверхностей (поверхности Зарисского[англ.]), не являющихся рациональными.

Одно время было неясно, являются комплексные поверхности с нулевыми q и P1 рациональными или нет, но Федериго Энрикес нашёл контрпример (поверхность Энрикеса[англ.]).

Remove ads

Примеры рациональных поверхностей

  • Поверхности Бордига[англ.]: Вложение степени 6 проективной плоскости в P4, определённое 10 точками в общем положении.
  • Поверхности Шатле[англ.]
  • Поверхности Кобла[англ.]
  • Кубические поверхности. Неособые кубические поверхности изоморфны раздутию проективной плоскости в 6 точках, и являются плоскостями Фано. Существуют именованные примеры — кубика Ферма, кубическая узловая поверхность Кэли[англ.] и диагональная поверхность Клебша[англ.].
  • Поверхности дель Пеццо[англ.] (поверхности Фано)
  • Поверхность Эннепера
  • Поверхности Хирцебруха[англ.] Σn
  • P1×P1. Произведение двух проективных прямых является поверхностью Хирцебруха Σ0.
  • Проективная плоскость
  • Поверхность Сегре[англ.]. Пересечение двух квадрик. Поверхность изоморфна проективной плоскости, раздутой в 5 точках.
  • Поверхность Штайнера[англ.]. Поверхность в P4 с особенностями, которая бирациональна проективной плоскости.
  • Поверхности Вайта[англ.], обобщение поверхностей Бордига.
  • Поверхность Веронезе. Вложение проективной плоскости в P5.

См. также

  • Список алгебраических поверхностей[англ.]

Примечания

Литература

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads