Лучшие вопросы
Таймлайн
Чат
Перспективы
Сопряжённый оператор
Из Википедии, свободной энциклопедии
Remove ads
Сопряжённый оператор — обобщение понятия эрмитово-сопряжённой матрицы для бесконечномерных пространств.
Линейная алгебра
Преобразование называется сопряжённым линейному преобразованию , если для любых векторов и выполнено равенство . У каждого преобразования существует единственное сопряжённое преобразование. Его матрица в базисе определяется по матрице преобразования формулой , если пространство евклидово, и формулой в унитарном пространстве. здесь обозначает матрицу Грама выбранного базиса. Если он ортонормированный, эти формулы принимают вид и соответственно.
Remove ads
Общее линейное пространство
Пусть — линейные пространства, а — сопряжённые линейные пространства (пространства линейных функционалов, определённых на ). Тогда для любого линейного оператора и любого линейного функционала определён линейный функционал — суперпозиция и : . Отображение называется сопряжённым линейным оператором и обозначается .
Если кратко, то , где — действие функционала на вектор .
Remove ads
Топологическое линейное пространство
Пусть — топологические линейные пространства, а — сопряжённые топологические линейные пространства (пространства непрерывных линейных функционалов, определённых на ). Для любого непрерывного линейного оператора и любого непрерывного линейного функционала определён непрерывный линейный функционал — суперпозиция и : . Нетрудно проверить, что отображение линейно и непрерывно. Оно называется сопряжённым оператором и обозначается также .
Банахово пространство
Пусть — непрерывный линейный оператор, действующий из банахова пространства в банахово пространство [1] и пусть — сопряжённые пространства. Обозначим . Если — фиксировано, то — линейный непрерывный функционал в . Таким образом, для определён линейный непрерывный функционал из , поэтому определён оператор , такой что .
называется сопряжённым оператором. Аналогично можно определять сопряжённый оператор к линейному неограниченному оператору, но он будет определён не на всём пространстве.
Для справедливы следующие свойства:
- Оператор — линейный.
- Если — линейный непрерывный оператор, то также линейный непрерывный оператор.
- Пусть — нулевой оператор, а — единичный оператор. Тогда .
- .
- .
- .
- .
Remove ads
Гильбертово пространство
В гильбертовом пространстве теорема Рисса даёт отождествление пространства со своим сопряжённым, поэтому для оператора равенство определяет сопряжённый оператор . Здесь — скалярное произведение в пространстве .
Remove ads
См. также
Примечания
Литература
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads