Лучшие вопросы
Таймлайн
Чат
Перспективы

Теорема Брауэра о неподвижной точке

Из Википедии, свободной энциклопедии

Remove ads

Теорема Брауэра о неподвижной точке — важная теорема о неподвижной точке, применимая к непрерывным отображениям в конечномерных пространствах, являющаяся основной для некоторых более общих теорем.

История

Приоритет в открытии теоремы принадлежит Пирсу Георгиевичу Болю: в своей работе 1904 года[1] он сформулировал и доказал теорему эквивалентную теореме о неподвижной точке и описал применение этой теоремы к теории дифференциальных уравнений[2]. Однако его результат не был замечен. В 1909 году Брауэр переоткрыл эту теорему для случая .

Remove ads

Формулировка

Обычно теорема формулируется в следующем виде: Любое непрерывное отображение замкнутого шара в себя в конечномерном евклидовом пространстве имеет неподвижную точку.

Более подробно, рассмотрим замкнутый шар в n-мерном пространстве . Пусть — некоторое непрерывное отображение этого шара в себя (не обязательно строго внутрь себя, не обязательно биективное, т.е. даже не обязательно сюръективное). Тогда найдется такая точка , что .

Remove ads

Доказательство

Суммиров вкратце
Перспектива

Из подсчёта гомологических или гомотопических групп сферы и шара вытекает, что не существует ретракции шара на его границу.

Пусть теперь — отображение шара в себя, не имеющее неподвижных точек. Построим на его основе ретракцию шара на его границу. Для каждой точки рассмотрим прямую, проходящую через точки и (она единственна, так как по предположению неподвижных точек нет.). Пусть — точка пересечения этой прямой с границей шара, причем лежит между и . Легко видеть, что отображение — ретракция шара на его границу. Противоречие.

Вариации и обобщения

Remove ads

Следствия

Примечания

Литература

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads