Лучшие вопросы
Таймлайн
Чат
Перспективы
Теорема Вайнберга о связи полей с частицами
Из Википедии, свободной энциклопедии
Remove ads
Теорема Вайнберга о связи полей с частицами — утверждение о связи между видом фурье-образов квантованных полей и операторами рождения и уничтожения частиц положительной массы. Доказана С. Вайнбергом в 1964 году [1][2][3][4]. Следствием этой теоремы являются зависимость типов полей от спина их квантов. При добавлении условия неприводимости поля по отношению к группе Пуанкаре можно получить уравнение Дирака для электрона, Вейля для нейтрино, Максвелла для фотона[5].
Remove ads
Формулировка
Суммиров вкратце
Перспектива
Для частиц положительной массы фурье-образы квантованных полей связаны с операторами рождения и уничтожения частиц линейными соотношениями[6]:
Remove ads
Пояснения
Суммиров вкратце
Перспектива
Оператор является оператором рождения новой частицы с импульсом и состоянием поляризации . Оператор является оператором уничтожения существующей частицы с импульсом и состоянием поляризации . Оператор является оператором рождения новой античастицы с импульсом и состоянием поляризации . Оператор является оператором уничтожения существующей античастицы с импульсом и состоянием поляризации . Состояние поляризации может принимать значения , где — спин квантов поля. Эти операторы удовлетворяют перестановочным соотношениям:
Выражения и обозначают фурье-образы квантованного поля , из формулы
где , функция равна единице при и нулю при [7]. Выражения и обозначают коэффициенты, однозначно вычисляемые при помощи использования свойств преобразований квантованных полей относительно группы Лоренца[8].
Следствия
С использованием сформулированной выше теоремы Вайнберга о связи полей с частицами [9] может быть доказана, как следствие, Теорема Паули.
Remove ads
Примечания
Литература
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads