Лучшие вопросы
Таймлайн
Чат
Перспективы
Теорема Сохоцкого — Вейерштрасса
Из Википедии, свободной энциклопедии
Remove ads
Теорема Сохоцкого — Вейерштрасса — теорема комплексного анализа, описывающая поведение голоморфной функции в окрестности существенной особой точки.

Центрирован относительно существенно особой точки z = 0.
Цвет отражает аргумент, а яркость — модуль значения функции.
Она гласит, что всякая однозначная аналитическая функция в каждой окрестности существенно особой точки принимает значения, сколь угодно близкие к произвольному наперёд заданному комплексному числу[1].
Remove ads
История
Была опубликована Ю. В. Сохоцким в 1868 году в его магистерской диссертации[K 1]; в ней доказывалось, что «в полюсе бесконечного порядка» (так была названа существенно особая точка) функция «должна принимать всевозможные значения» (под значением функции в этой точке в этой работе понималось предельное значение по сходящейся к ней последовательности точек)[2].
Одновременно с Сохоцким теорему о плотности образа проколотой окрестности существенно особой точки опубликовал итальянский математик Ф. Казорати в своей работе «Теория функций комплексных переменных»[K 2]. Вейерштрасс опубликовал эту теорему только в 1876 году в работе «К теории однозначных аналитических функций»[K 3][3]. Впервые же она встречается у французских математиков Ш. Брио и Ж. К. Буке в работе по теории эллиптических функций[K 4][1].
Сохоцкий нигде не отстаивал своего приоритета по поводу этого и других своих результатов, приписывавшихся другим[2]; в литературе на европейских языках теорема известна как теорема Казорати — Вейерштрасса.
Remove ads
Формулировка
Каково бы ни было , в любой окрестности существенно особой точки функции найдётся хотя бы одна точка , в которой значение функции отличается от произвольно заданного комплексного числа B меньше, чем на .
Remove ads
Доказательство
Суммиров вкратце
Перспектива
Предположим, что теорема неверна, т.е.
Рассмотрим вспомогательную функцию . В силу нашего предположения функция определена и ограничена в -окрестности точки . Следовательно - устранимая особая точка [4]. Это означает, что разложение функции в окрестности точки имеет вид:
- .
Тогда, в силу определения функции , в данной окрестности точки имеет место следующее разложение функции :
- ,
где аналитическая функция ограничена в -окрестности точки . Но такое разложение означает, что точка является полюсом или правильной точкой функции , и разложение последней в ряд Лорана должно содержать конечное число членов, что противоречит условию теоремы.
Эквивалентным образом эта теорема может быть переформулирована следующим образом:
- Если точка является существенно особой для функции , аналитической в некоторой проколотой окрестности , то для произвольного комплексного числа можно найти последовательность , сходящуюся к , для которой .
- множество значений голоморфной функции в сколь угодно малой проколотой окрестности её существенной особой точки всюду плотно в .
Remove ads
Обобщения
Теорему Сохоцкого обобщает Большая теорема Пикара, которая утверждает, что аналитическая функция в окрестности существенно особой точки принимает все значения кроме, быть может, одного значения.
Комментарии
- Теория интегральных вычетов с некоторыми приложениями. — СПб., 1868.
- Сasorati F. Teorica delle funzioni di variabili complesse. — Pavia, 1868.
- Weierstrass K. Zur Theorie der eindeutigen analytischen Funktionen // Math. Werkc, Bd 2, В. — P. 77-124.
- С. Вriot, I. Bouquet. Théorie des fonctions doublement périodiques et en particulier des fonctions elliptiques. — 1859.
Remove ads
Ссылки
Литература
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads