Лучшие вопросы
Таймлайн
Чат
Перспективы

Теорема Эренфеста

Из Википедии, свободной энциклопедии

Remove ads

Теоре́ма Эренфе́ста (Уравнения Эренфеста) — утверждение о виде уравнений квантовой механики для средних значений наблюдаемых величин гамильтоновых систем. Эти уравнения впервые получены Паулем Эренфестом в 1927 году.

Формулировка теоремы[1]:

В квантовой механике средние значения координат и импульсов частицы, а также силы, действующей на неё, связаны между собой уравнениями, аналогичными соответствующим уравнениям классической механики, то есть при движении частицы средние значения этих величин в квантовой механике изменяются так, как изменяются значения этих величин в классической механике.

Полная аналогия имеет место только при условии выполнения ряда требований[2][3].

Уравнение Эренфеста для среднего значения квантовой наблюдаемой гамильтоновой системы имеет вид

где  — квантовая наблюдаемая,  — оператор Гамильтона системы, угловыми скобками обозначено взятие среднего значения, а квадратные скобки обозначают коммутатор. Это уравнение может быть выведено из уравнения Гейзенберга.

В частном случае, средние значения координаты и импульса частицы описываются уравнениями

где  — масса частицы,  — оператор потенциальной энергии частицы.

Уравнения Эренфеста для средних координат и импульсов являются квантовыми аналогами системы канонических уравнений Гамильтона и задают квантовое обобщение второго закона Ньютона.

Remove ads

Примечания

Литература

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads