Лучшие вопросы
Таймлайн
Чат
Перспективы

Теорема об униформизации

Из Википедии, свободной энциклопедии

Remove ads

Теорема об униформизации — обобщение теоремы Римана об отображении на двумерные римановы многообразия. Можно сказать, что теорема даёт наилучшую метрику в данном конформном классе.

Формулировка

Любая односвязная риманова поверхность конформно эквивалентна сфере Римана , комплексной плоскости , либо открытому единичному диску .

Remove ads

Следствия

  • Любая риманова метрика на связном двумерном многообразии конформно эквивалентна полной метрике с постоянной кривизны.
    • Если многообразие замкнуто, то знак кривизны можно найти по его эйлеровой характеристике.
      • Если эйлерова характеристика положительна, то многообразие конформно эквивалентно сфере или проективной плоскости с канонической метрикой.
      • Если эйлерова характеристика равна нулю, то многообразие конформно эквивалентно плоскому тору или плоской бутылке Кляйна. При этом у тора и бутылки Кляйна существует 2-параметрическое семейство плоских метрик, не конформно эквивалентных друг другу.
      • Если эйлерова характеристика отрицательна, то многообразие конформно эквивалентно гиперболической поверхности.
Remove ads

Вариации и обобщения

  • Теорема геометризации может рассматриваться как обобщения теоремы об униформизации на трёхмерные многообразия.

Литература

  • Форд Л. P. Автоморфные функции. — пер. с англ. — М.— Л., 1936.
  • Abikoff, William. The uniformization theorem (англ.) // Amer. Math. Monthly. — 1981. Vol. 88, no. 8. P. 574–592.
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads