Лучшие вопросы
Таймлайн
Чат
Перспективы

Точки Торричелли

Из Википедии, свободной энциклопедии

Точки Торричелли
Remove ads
Remove ads

Точки Торричелли — две точки, из которых все стороны треугольника видны либо под углом в 60°, либо под углом в 120°. Эти точки в треугольнике — «парные». Иногда эти точки называют точками Ферма или точками Ферма-Торричелли.

  • Две Точки Торричелли — это точки пересечения отрезков, соединяющих вершины треугольника:
    • c соответствующими свободными вершинами равносторонних треугольников, построенных на противолежащих сторонах треугольника (наружу) — первая точка Торричелли
    • с соответствующими свободными вершинами правильных треугольников, построенных на противолежащих сторонах внутрь треугольника — вторая точка Торричелли.
Thumb
Построение точки Торричелли для треугольников с углами, не превосходящими 120°
Remove ads

Свойства

Суммиров вкратце
Перспектива

Гипербола Киперта — описанная гипербола, проходящая через центроид и ортоцентр. Если на сторонах треугольника построить подобные равнобедренные треугольники (наружу или внутрь), а затем соединить их вершины с противоположными вершинами исходного треугольника, то три таких прямые пересекутся в одной точке, лежащих на гиперболе Киперта. В частности, на этой гиперболе лежат точки Торричелли и точки Наполеона (точки пересечения чевиан, соединяющие вершины с центрами построенных на противоположных сторонах правильных треугольников)[2].

Remove ads

Замечание

Кстати, на первом рисунке справа центры трёх равносторонних треугольников сами являются вершинами нового равностороннего треугольника (Теорема Наполеона). Кроме того, .

Remove ads

См. также

Примечания

Loading content...

Литература

Loading content...
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads