Лучшие вопросы
Таймлайн
Чат
Перспективы

Триакистетраэдр

полуправильный многогранник (каталаново тело), двойственный усечённому тетраэдру Из Википедии, свободной энциклопедии

Триакистетраэдр
Remove ads

Триакистетра́эдр (от др.-греч. τριάχις — «трижды», τέτταρες — «четыре» и ἕδρα — «грань»), также называемый тригон-тритетраэдром, — полуправильный многогранник (каталаново тело), двойственный усечённому тетраэдру. Составлен из 12 одинаковых тупоугольных равнобедренных треугольников, в которых один из углов равен а два других

Краткие факты Триакистетраэдр, Тип ...

Имеет 8 вершин; в 4 вершинах (расположенных так же, как вершины правильного тетраэдра) сходятся своими острыми углами по 6 граней, в 4 вершинах (расположенных так же, как вершины другого правильного тетраэдра) сходятся тупыми углами по 3 грани.

У триакистетраэдра 18 рёбер — 6 «длинных» (расположенных так же, как рёбра правильного тетраэдра) и 12 «коротких». Двугранный угол при любом ребре одинаков и равен

Триакистетраэдр можно получить из правильного тетраэдра, приложив к каждой его грани правильную треугольную пирамиду с основанием, равным грани тетраэдра, и высотой, которая в раз меньше стороны основания. При этом полученный многогранник будет иметь по 3 грани вместо каждой из 4 граней исходного — с чем и связано его название.

Remove ads

Метрические характеристики

Суммиров вкратце
Перспектива

Если «короткие» рёбра триакистетраэдра имеют длину , то его «длинные» рёбра имеют длину а площадь поверхности и объём выражаются как

Радиус вписанной сферы (касающейся всех граней многогранника в их инцентрах) при этом будет равен

радиус полувписанной сферы (касающейся всех рёбер) —

Описать около триакистетраэдра сферу — так, чтобы она проходила через все вершины, — невозможно.

Remove ads

Ссылки

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads