Лучшие вопросы
Таймлайн
Чат
Перспективы
Задача о триангуляции многоугольника
Из Википедии, свободной энциклопедии
Remove ads
Задача о триангуляции многоугольника — классическая задача комбинаторной и вычислительной геометрии, состоящая в нахождении триангуляции многоугольника без дополнительных вершин.

Доказательство существования такой триангуляции не представляет сложности. Более того, эта задача всегда имеет решение для многоугольников с дырками, то есть областей плоскости, ограниченных несколькими замкнутыми ломаными.
Remove ads
Формулировка
Задача состоит в нахождении оптимального алгоритма триангуляции n-угольника без дополнительных вершин.
Эта задача может быть решена за линейное время, то есть задача имеет сложность .
История
Долгое время был открытым вопрос, можно ли найти триангуляцию n-угольника за время, меньше, чем .[1] Затем Ван Вик (1988) обнаружил алгоритм, требующий время ,[2] позже упрощённый Киркпатриком и Клаве.[3] Затем последовало несколько алгоритмов со сложностью (где — итерированный логарифм), не отличимых на практике от линейного времени.[4][5][6]
В 1991 году Бернард Чазелле доказал, что любой простой многоугольник может быть триангулирован в линейное время, хотя предложенный им алгоритм оказался очень сложным.[7] Также известен более простой вероятностный алгоритм с линейным ожидаемым временем.[8][9]
Remove ads
Алгоритмы
Суммиров вкратце
Перспектива

Отрезание ушей
Двойственный граф триангуляции без дополнительных вершин у простого многоугольника всегда является деревом. Отсюда в частности следует, что любой простой n-угольник с n > 3 имеет по меньшей мере два уха, то есть два треугольника, две стороны каждого из которых являются сторонами многоугольника, а третья полностью внутри него.[10]
Один из способов триангуляции состоит в нахождении такого уха и отрезании его от многоугольника. После этого ту же операцию повторно применяют к оставшемуся многоугольнику до тех пор, пока не останется один треугольник.
Этот способ работает только для многоугольников без дырок. Он прост в реализации, но работает медленнее, чем некоторые другие алгоритмы. Реализация, которая хранит отдельные списки выпуклых и вогнутых вершин, работает за время .
Эффективный алгоритм для отрезания ушей был предложен Хоссамом Эль-Гинди, Хэзелом Эвереттом и Годфридом Туссеном.[11]
Через монотонные многоугольники
Многоугольник называется монотонным, если его граничная ломаная имеет не более двух точек пересечения с прямой, перпендикулярной данной.
Монотонный многоугольник может быть триангулирован за линейное время с помощью алгоритма А. Фурнье и Д. Ю. Монтуно[12] или алгоритма Годфрид Туссен.[13]
Произвольный многоугольник может быть подразбит на монотонные. Алгоритм триангуляции простого многоугольника, построенный на этой идее, работает за время .
Вариации и обобщения

- Триангуляция многогранника без дополнительных вершин существует не всегда. Примером является Многогранник Шёнхардта, см. рисунок.

- Триангуляция выпуклого многоугольника является тривиальной задачей. Она решается в линейное время путём проведения всевозможных диагоналей из одной вершины к остальным.
- Общее число способов триангулировать выпуклый -угольник диагоналями равно числу Каталана под номером , что было доказано Эйлером.[14]
Remove ads
См. также
Примечания
Ссылки
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads