Лучшие вопросы
Таймлайн
Чат
Перспективы

Задача о триангуляции многоугольника

Из Википедии, свободной энциклопедии

Задача о триангуляции многоугольника
Remove ads

Задача о триангуляции многоугольника — классическая задача комбинаторной и вычислительной геометрии, состоящая в нахождении триангуляции многоугольника без дополнительных вершин.

Thumb
Триангуляция многоугольника без дополнительных вершин.

Доказательство существования такой триангуляции не представляет сложности. Более того, эта задача всегда имеет решение для многоугольников с дырками, то есть областей плоскости, ограниченных несколькими замкнутыми ломаными.

Remove ads

Формулировка

Задача состоит в нахождении оптимального алгоритма триангуляции n-угольника без дополнительных вершин.

Эта задача может быть решена за линейное время, то есть задача имеет сложность .

История

Долгое время был открытым вопрос, можно ли найти триангуляцию n-угольника за время, меньше, чем .[1] Затем Ван Вик (1988) обнаружил алгоритм, требующий время ,[2] позже упрощённый Киркпатриком и Клаве.[3] Затем последовало несколько алгоритмов со сложностью (где итерированный логарифм), не отличимых на практике от линейного времени.[4][5][6]

В 1991 году Бернард Чазелле доказал, что любой простой многоугольник может быть триангулирован в линейное время, хотя предложенный им алгоритм оказался очень сложным.[7] Также известен более простой вероятностный алгоритм с линейным ожидаемым временем.[8][9]

Remove ads

Алгоритмы

Суммиров вкратце
Перспектива
Thumb
Многоугольник и его ухо

Отрезание ушей

Двойственный граф триангуляции без дополнительных вершин у простого многоугольника всегда является деревом. Отсюда в частности следует, что любой простой n-угольник с n > 3 имеет по меньшей мере два уха, то есть два треугольника, две стороны каждого из которых являются сторонами многоугольника, а третья полностью внутри него.[10]

Один из способов триангуляции состоит в нахождении такого уха и отрезании его от многоугольника. После этого ту же операцию повторно применяют к оставшемуся многоугольнику до тех пор, пока не останется один треугольник.

Этот способ работает только для многоугольников без дырок. Он прост в реализации, но работает медленнее, чем некоторые другие алгоритмы. Реализация, которая хранит отдельные списки выпуклых и вогнутых вершин, работает за время .

Эффективный алгоритм для отрезания ушей был предложен Хоссамом Эль-Гинди, Хэзелом Эвереттом и Годфридом Туссеном.[11]

Через монотонные многоугольники

Многоугольник называется монотонным, если его граничная ломаная имеет не более двух точек пересечения с прямой, перпендикулярной данной.

Монотонный многоугольник может быть триангулирован за линейное время с помощью алгоритма А. Фурнье и Д. Ю. Монтуно[12] или алгоритма Годфрид Туссен.[13]

Произвольный многоугольник может быть подразбит на монотонные. Алгоритм триангуляции простого многоугольника, построенный на этой идее, работает за время .

Вариации и обобщения

Thumb
Многогранник Шёнхардта не допускает триангуляции без дополнительных вершин
Thumb
42 триангуляции без дополнительных вершин у выпуклого семиугольника.
  • Триангуляция выпуклого многоугольника является тривиальной задачей. Она решается в линейное время путём проведения всевозможных диагоналей из одной вершины к остальным.
    • Общее число способов триангулировать выпуклый -угольник диагоналями равно числу Каталана под номером , что было доказано Эйлером.[14]
Remove ads

См. также

Примечания

Ссылки

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads