Лучшие вопросы
Таймлайн
Чат
Перспективы
Тригонометрические функции от матрицы
Из Википедии, свободной энциклопедии
Remove ads
Тригонометрические функции от матрицы — обобщения тригонометрических функций для квадратных матриц.
Тригонометрические функции (особенно часто синус и косинус) от квадратных матриц возникают в решениях систем дифференциальных уравнений второго порядка.[1] Они определяются через те же ряды Тейлора, через которые определяются тригонометрические функции от вещественного или комплексного аргумента:[2]
где Xn означает матрицу X в степени n, а I — единичную матрицу той же размерности.
Также тригонометрические функции матричного аргумента могут быть определены через матричную экспоненту с учётом матричного аналога формулы Эйлера eiX = cos X + i sin X:
Например, пусть X — стандартная матрица Паули:
Тогда
Можно вычислить и кардинальный синус:
Remove ads
Свойства
Суммиров вкратце
Перспектива
Справедлив матричный аналог основного тригонометрического тождества:[2]
Если X является диагональной матрицей, sin X и cos X также являются диагональными матрицами, причём (sin X)nn = sin(Xnn) и (cos X)nn = cos(Xnn), то есть синус и косинус диагональной матрицы могут быть вычислены путём вычисления соответственно синусов и косинусов элементов аргумента на главной диагонали.
Матричные аналоги формул синуса и косинуса суммы справедливы тогда и только тогда, когда матрицы коммутируют, то есть XY = YX:[2]
Remove ads
Другие функции
Суммиров вкратце
Перспектива
Тангенс, обратные тригонометрические функции, гиперболические функции и обратные гиперболические функции так же могут быть определены и для матриц:[3]
- (см. Обратные тригонометрические функции#Связь с натуральным логарифмом, Матричный логарифм, Квадратный корень из матрицы)
и так далее.
Remove ads
Примечания
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads