Лучшие вопросы
Таймлайн
Чат
Перспективы

Тригонометрические функции от матрицы

Из Википедии, свободной энциклопедии

Remove ads

Тригонометрические функции от матрицы — обобщения тригонометрических функций для квадратных матриц.

Тригонометрические функции (особенно часто синус и косинус) от квадратных матриц возникают в решениях систем дифференциальных уравнений второго порядка.[1] Они определяются через те же ряды Тейлора, через которые определяются тригонометрические функции от вещественного или комплексного аргумента:[2]

где Xn означает матрицу X в степени n, а I — единичную матрицу той же размерности.

Также тригонометрические функции матричного аргумента могут быть определены через матричную экспоненту с учётом матричного аналога формулы Эйлера eiX = cos X + i sin X:

Например, пусть X — стандартная матрица Паули:

Тогда

Можно вычислить и кардинальный синус:

Remove ads

Свойства

Суммиров вкратце
Перспектива

Справедлив матричный аналог основного тригонометрического тождества:[2]

Если X является диагональной матрицей, sin X и cos X также являются диагональными матрицами, причём (sin X)nn = sin(Xnn) и (cos X)nn = cos(Xnn), то есть синус и косинус диагональной матрицы могут быть вычислены путём вычисления соответственно синусов и косинусов элементов аргумента на главной диагонали.

Матричные аналоги формул синуса и косинуса суммы справедливы тогда и только тогда, когда матрицы коммутируют, то есть XY = YX:[2]

Remove ads

Другие функции

Суммиров вкратце
Перспектива

Тангенс, обратные тригонометрические функции, гиперболические функции и обратные гиперболические функции так же могут быть определены и для матриц:[3]

(см. Обратные тригонометрические функции#Связь с натуральным логарифмом, Матричный логарифм, Квадратный корень из матрицы)

и так далее.

Remove ads

Примечания

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads