Лучшие вопросы
Таймлайн
Чат
Перспективы

Туннельное магнитосопротивление

квантовомеханический эффект Из Википедии, свободной энциклопедии

Туннельное магнитосопротивление
Remove ads

Туннельное магни́тное сопротивле́ние, туннельное магнитосопротивление или магнетосопротивление (сокр. ТМС, англ. Tunnel magnetoresistance, сокр. TMR) — квантовомеханический эффект, проявляется при протекании тока между двумя слоями ферромагнетиков, разделенных тонким (около 1 нм) слоем диэлектрика. При этом общее сопротивление устройства, ток в котором протекает из-за туннельного эффекта, зависит от взаимной ориентации полей намагничивания двух магнитных слоев. Сопротивление выше при антипараллельной намагниченности слоев. Эффект туннельного магнитного сопротивления похож на эффект гигантского магнитного сопротивления, но в нём вместо слоя немагнитного металла используется слой изолирующего туннельного барьера.

Thumb
Пример структуры, в которой возникает эффект туннельного магнетосопротивления.
Remove ads

История открытия

Суммиров вкратце
Перспектива

Эффект был открыт в 1975 году Мишелем Жюльером, использовавшим железо в качестве ферромагнетика и оксид германия в качестве диэлектрика (структура Fe/GeO/Co). Данный эффект проявлялся при температуре 4,2 К, при этом относительное изменение сопротивления составляло около 14 %, поэтому ввиду отсутствия практического применения он не привлек к себе внимания[1].

При комнатной температуре действие эффекта впервые было открыто в 1991 году Терунобу Миязаки (Университет Тохоку, Япония), изменение сопротивления составило всего 2,7 %. Позже, в 1994 году, Миядзаки впервые обнаружил в переходе Fe/Al2O3/Fe отношение магнитосопротивления 30 % при 4,2 К и 18 % при 300 K[2]. Независимо от него группой ученых во главе с Джагадишем Мудера в соединениях CoFe и Co был обнаружен эффект 11,8 %[3], в связи с возобновлением интереса к исследованиям в этой области после открытия эффекта гигантского магнитного сопротивления. Наибольший эффект, наблюдаемый в то время с изоляторами из оксида алюминия, составлял около 70 % при комнатной температуре.

В 2001 году группа Батлера и группа Матона независимо сделали теоретическое предсказание, что при использовании железа в качестве ферромагнетика и оксида магния в качестве диэлектрика эффект туннельного магнитного сопротивления может возрасти на несколько тысяч процентов. В том же году Боуэн и др. первыми сообщили об экспериментах, показывающих значительное туннельное магнитосопротивление в туннельном переходе на основе MgO (Fe/MgO/FeCo)[4].

В 2004 году группа Перкина и группа Юаса смогли изготовить устройства на основе Fe/MgO/Fe и достичь величины туннельного магнитосопротивления в 200 % при комнатной температуре[5].

В 2007 году устройства на основе ТМР эффекта с оксидом магния полностью заменили устройства на основе эффекта гигантского магнитного сопротивления на рынке устройств магнитного хранения информации.

В 2008 году С. Икеда, Х. Оно и др. из Университета Тохоку в Японии наблюдали эффект относительного изменения сопротивления до 604 % при комнатной температуре и более 1100 % при 4,2 К в соединениях CoFeB/MgO/CoFeB[6]. Однако впоследствии оказалось, что столь большие значения являлись результатом ошибки датчика сопротивления, и статьи были отозваны.

Remove ads

Теория

Суммиров вкратце
Перспектива

В классической физике, если энергия частицы меньше высоты барьера, то она полностью отражается от барьера. Напротив, в квантовой механике существует отличная от нуля вероятность нахождения частицы по другую сторону барьера. В структуре ферромагнит — изолятор — ферромагнит для электрона энергией εF изолятор представляет собой барьер толщиной d и высотой εВ > εF.

Рассмотрим зонную структуру магнитных (Co,Fe,Ni) металлов. Переходные металлы имеют 4s, 4p и 3d валентные электроны, различающиеся орбитальным моментом. Состояния 4s и 4p образуют sp — зону проводимости, в которой электроны имеют высокую скорость, малую плотность состояний и, следовательно, большую длину свободного пробега, то есть можно предполагать, что они ответственны за проводимость 3d металлов. В то же время d-зона характеризуется высокой плотностью состояний и низкой скоростью электронов.

Thumb
Туннельный контакт ФМ-И-ФМ и энергетическая структура при антиферромагнитном обменном взаимодействии (В=0).

Как известно, у ферромагнитных 3d металлов d-зона расщеплена вследствие обменного взаимодействия. В соответствии с принципом Паули из-за кулоновского отталкивания d электронов им энергетически более выгодно иметь параллельно ориентированные спины, что приводит к появлению спонтанного магнитного момента. Иными словами, вследствие обменного расщепления d зоны число занятых состояний различно для электронов с направлением спина вверх и вниз, что дает не равный нулю магнитный момент.

Thumb
Туннельный контакт ФМ-И-ФМ и энергетическая структура d-зоны при ферромагнитном спаривании (B=Bs).

В отсутствие магнитного поля ферромагнитные электроды имеют противоположное направление намагниченностей (антипараллельная конфигурация, АР). Зона d — электронов расщеплена обменным взаимодействием как показано на рисунке. При этом происходит туннелирование электронов со спином вверх из большего числа состояний в меньшее и наоборот для электронов с противоположным спином. Наложение магнитного поля приводит к параллельной ориентации (Р) намагниченности ферромагнитных электродов. В этом случае электроны со спином вверх туннелируют из большего числа состояний в большее, а электроны со спином вниз — из малого числа состояний в малое. Это приводит к различию туннельных сопротивлений для параллельной и антипараллельной конфигурации. Данное изменение сопротивления при переориентации намагниченности во внешнем магнитном поле и является проявлением туннельного магнитосопротивления (ТМС).

В настоящее время на основании эффекта туннельного магнитного сопротивления создана магниторезистивная оперативная память (MRAM), и он также применяется в считывающих головках жестких дисков.

Remove ads

Примечания

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads