Лучшие вопросы
Таймлайн
Чат
Перспективы
Уравнение состояния
Из Википедии, свободной энциклопедии
Remove ads
Уравне́ние состоя́ния — соотношение, отражающее для конкретного класса термодинамических систем связь между характеризующими её макроскопическими физическими величинами, такими как температура, давление, объём, химический потенциал, энтропия, внутренняя энергия, энтальпия и др.[1] Уравнения состояния необходимы для получения с помощью математического аппарата термодинамики конкретных результатов, касающихся рассматриваемой системы[2]. Эти уравнения не содержатся в постулатах термодинамики, так что для каждого выбранного для изучения макроскопического объекта их либо определяют эмпирически, либо для модели изучаемой системы находят методами статистической физики[3]. В рамках термодинамики уравнения состояния считают заданными при определении системы[4]. Если изучаемый объект допускает термодинамическое описание, то это описание выполняют посредством уравнений состояния, которые для реальных веществ могут иметь весьма сложный вид.
Remove ads
О терминологии
Суммиров вкратце
Перспектива
Из множества уравнений состояния выделяются:
- уравнения состояния, выражающие интенсивные переменные состояния, входящие в фундаментальное уравнение Гиббса в энергетическом выражении и фундаментальное уравнение Гиббса энтропийном выражении, в виде функций от экстенсивных переменных состояния — аргументов соответствующего фундаментального уравнения Гиббса[5][6] (см. примечание[7]);
- термические уравнения состояния, выражающие связь между температурой, обобщёнными термодинамическими координатами (к которым в данном случае причислены количества составляющих систему веществ) и обобщёнными термодинамическими силами (к которым в данном случае причислены химические потенциалы составляющих систему веществ)[8][9]. Обычно под уравнениями состояния, если специально не оговаривается, подразумевают термические уравнения состояния[10]. Величины, входящие термическое уравнение состояния, именуют первичными термическими величинам;
- калорические уравнения состояния, отражающие связь между первичными калорическими величинами и первичными термическими величинами. В качестве первичных калорических величин обычно выступают термодинамические потенциалы[11] (чаще всего внутренняя энергия[3] и энтальпия[12][13][14][15]) и энтропия[12][11][15] как родоначальница ряда функций Массье — Планка;
- канонические уравнения состояния (фундаментальные уравнения Гиббса для термодинамических потенциалов), представляющие собой выражения для термодинамических потенциалов как функций их естественных независимых переменных[2][16].

В русскоязычной учебной литературе получила распространение более узкая трактовка понятий «термические уравнения состояния» и «калорическое уравнение состояния», позволяющая за счёт потери общности заметно упростить изложение рассматриваемого вопроса. А именно, в узком смысле под термическим уравнением состояния понимают зависимость обобщённой силы или химического потенциала от температуры , обобщённых координат и масс составляющих веществ [3][10]:
(выражение есть сокращение для перечисления переменных определённого типа, в данном случае — обобщённых координат). В узком смысле под калорическим уравнением состояния понимают зависимость от температуры и других первичных термических величин внутренней энергии [3]:
Общее число уравнений состояния (все термические плюс калорическое) термодинамической системы при таком подходе равно числу термодинамических степеней свободы системы, то есть числу независимых переменных, характеризующих состояние системы, а их полный набор необходим и достаточен для исчерпывающего описания термодинамических свойств системы[3].
Далее — если иное не оговорено особо — для большей наглядности речь будет идти об однородных закрытых термодеформационных системах в статическом (локальноравновесном) состоянии. Вариантность такой системы равна двум[3] (см. Правило Дюгема) и для её полного описания — помимо калорического уравнения состояния — требуется единственное термическое уравнение состояния. Простейшим примером такой системы служит газ в цилиндре с поршнем.
Remove ads
Термическое уравнение состояния
Суммиров вкратце
Перспектива
Термическое уравнение состояния (ТУС, термин введён Х. Камерлинг-Оннесом[19][20]) для закрытой термодеформационной системы связывает между собой её давление, объём и температуру; его общий вид можно записать так[21]:
(Термическое уравнение состояния, заданное как неявная функция) |
Или же так:
(Термическое уравнение состояния, заданное как иная неявная функция) |
Таким образом, чтобы задать термическое уравнение состояния необходимо конкретизировать вид функции .
Для идеального газа (как классического, так и квазиклассического) его термическое уравнение состояния известно как уравнение Клапейрона (уравнение Клапейрона — Менделеева)[14][22][23]:
где — универсальная газовая постоянная, — масса газа, — его молярная масса.
Для фотонного газа его давление зависит только от температуры, а термическое уравнение состояния выглядит так[24][25]:
(Термическое уравнение состояния фотонного газа) |
где a — радиационная постоянная.
Для макроскопических объектов, требующих от термодинамики учёта их магнитных и электрических свойств, термические уравнения состояния имеют следующий вид[1][26][27]:
(Термическое уравнение состояния магнетика) |
(Термическое уравнение состояния электрически поляризуемой среды) |
где — намагниченность вещества, — напряжённость магнитного поля, — поляризованность вещества, — напряжённость электрического поля.
Для упругого стержня (из изотропного материала) длиной L, на который действует сила F, направленная вдоль стержня, термическое уравнение состояния выглядит так[28]:
(Термическое уравнение состояния упругого стержня) |
Термические коэффициенты
Выражая одну из переменных в термическом уравнении состояния через две другие, для простой[29] закрытой системы в зависимости от выбора независимых переменных термическое уравнение состояния можно записать тремя способами[21][30]:
(Термическое уравнение состояния с независимыми переменными T и V) |
(Термическое уравнение состояния с независимыми переменными T и P) |
(Термическое уравнение состояния с независимыми переменными V и P) |
Запишем эти уравнения в дифференциальной форме[31]:
(Дифференциальное ТУС с независимыми переменными T и V) |
(Дифференциальное ТУС с независимыми переменными T и P) |
(Дифференциальное ТУС с независимыми переменными P и V) |
В приведённые уравнения входят шесть частных производных, которые попарно обратны друг другу:
поэтому самостоятельное значение имеют только три из них. В качестве основных обычно выбирают производные
- и
которые называют термическими коэффициентами[31][32]. Название отражает связь этих коэффициентов с термическим уравнением состояния.
Из математического анализа известно, что для любой неявно заданной функции трёх переменных
справедливо соотношение[33][34]
(Термическое уравнение состояния в дифференциальной форме) |
или[35]
то есть любой из трёх термических коэффициентов можно выразить через два других. Это соотношение иногда называют термическим уравнением состояния в дифференциальной форме[36][37][38].
На практике используют не сами частные производные, а образованные из них коэффициенты[39](также называемые термическими коэффициентами[40][41][34], либо же термодинамическими коэффициентами[42][43]):
изобарный коэффициент термического расширения
(Изобарный коэффициент объёмного расширения; коэффициент термического расширения; температурный коэффициент всестороннего расширения; термический коэффициент всестороннего расширения) |
характеризующий скорость изменения объёма при изменении температуры в условиях постоянного давления (для идеального газа [44][37]);
термический коэффициент давления при постоянном объёме
(Изохорный коэффициент давления; температурный коэффициент давления; термический коэффициент давления; коэффициент термической упругости) |
характеризующий скорость изменения давления при изменении температуры в условиях постоянного объёма (для идеального газа [44][37]);
изотермический коэффициент всестороннего сжатия
(Изотермический коэффициент всестороннего сжатия; коэффициент изотермического сжатия; коэффициент объёмного сжатия; коэффициент сжимаемости; коэффициент объёмной упругости; коэффициент объёмного упругого расширения) |
характеризующий скорость изменения объёма при изменении давления в условиях постоянной температуры (для идеального газа [45][46]). Знак минус указывает на уменьшение объёма с повышением давления и нужен для того, чтобы избежать отрицательных значений коэффициента сжимаемости[47][48].
Из термического уравнения состояния в дифференциальной форме вытекает уравнение связи между коэффициентами объёмного расширения, упругости и сжатия[33]:
(Уравнение связи между коэффициентами объёмного расширения, упругости и сжатия) |
Это соотношение позволяет, например, найти коэффициент для твёрдых и жидких тел (которые практически невозможно нагреть или охладить без изменения их объёма) по определяемым опытным путём коэффициентам и [49].
Термические коэффициенты являются функциями объёма, давления и температуры. Практическое значение коэффициентов объёмного расширения, упругости и сжатия состоит в том, что они используются для вычисления тех термодинамических величин, которые затруднительно или невозможно определить экспериментально.
Remove ads
Калорическое уравнение состояния
Суммиров вкратце
Перспектива
Если в термическое уравнение состояния в качестве обязательной переменной (зависимой или независимой) входит температура, то калорическое уравнение состояния (КУС) для простой закрытой системы отражает зависимость внутренней энергии от термодинамических параметров состояния (температуры и объёма, температуры и давления, объёма и давления)[50][51] (авторство термина КУС принадлежит Х. Камерлинг-Оннесу)[19]:
(Калорическое уравнение состояния с независимыми переменными T и V) |
(Калорическое уравнение состояния с независимыми переменными T и P) |
(Калорическое уравнение состояния с независимыми переменными V и P) |
Калорические коэффициенты
Калорические коэффициенты вводят способом, аналогичным способу введения термических коэффициентов. Запишем калорическое уравнение состояния с независимыми переменными и в дифференциальной форме[40]:
(Дифференциальное КУС с независимыми переменными и ) |
и посредством входящих в это соотношение частных производных введём первую пару калорических коэффициентов — теплоёмкость при постоянном объёме[52][53]
(Теплоёмкость при постоянном объёме) |
и теплоту изотермического расширения[52][53]
(Теплота изотермического расширения) |
имеющую размерность давления. Применявшееся ранее для этого калорического коэффициента название скрытая теплота расширения как пережиток теории теплорода к использованию не рекомендуется[52].
Для идеального газа теплоёмкость при постоянном объёме равна[54]: для одноатомных, для двухатомных и для многоатомных газов. Здесь — масса газа, — молярная масса этого газа, — универсальная газовая постоянная. Теплота изотермического расширения идеального газа [55][56].
Частная производная
(Внутреннее давление) |
носит название внутреннего давления и к калорическим коэффициентам не относится, хотя и вводится одновременно с ними. Численное значение этой величины (отражающей на молекулярном уровне взаимное притяжение частиц), мало для реальных газов и очень велико (по сравнению с обычными значениями внешнего давления) для жидкостей и твёрдых тел[52]. Для идеального газа то есть внутренняя энергия идеального газа не зависит от объёма (закон Джоуля)[57][58].
Введём вторую пару калорических коэффициентов, связанных с калорическим уравнением состояния с независимыми переменными и — теплоёмкость при постоянном давлении[59]
(Теплоёмкость при постоянном давлении, выраженная через внутреннюю энергию) |
и теплоту изотермического возрастания давления[59]
(Теплота изотермического возрастания давления, выраженная через внутреннюю энергию) |
В литературе эти калорические коэффициенты чаще приводят в более компактном и удобном для расчётов виде, используя энтальпию или энтропию [60]:
(Теплоёмкость при постоянном давлении, выраженная через энтальпию) |
(Теплота изотермического возрастания давления; теплота изотермического сжатия) |
Для идеального газа и связаны формулой Майера. Коэффициент в подавляющем большинстве случаев есть величина отрицательная; для идеального газа [55][61]. Применявшееся ранее для этого калорического коэффициента название скрытая теплота изменения давления к использованию не рекомендуется.
Приведём определения для последней пары калорических коэффициентов, связанных с калорическим уравнением состояния с независимыми переменными и [36] — теплоты изохорного сжатия
(Теплота изохорного сжатия) |
и теплоты изобарного расширения
(Теплота изобарного расширения) |
Четыре из шести введённых калорических коэффициентов ( и ), имея самостоятельный физический смысл, являются полезными вспомогательными величинами при выводе термодинамических соотношений и в термодинамических расчётах, в частности, при вычислении внутренней энергии, энтальпии и энтропии. Коэффициенты и в настоящее время вышли из употребления[62].
Связь между термическими и калорическими коэффициентами
Полезные соотношения, связывающие термические и калорические коэффициенты[63][58][64]:
(Уравнение связи между термическим и калорическим уравнениями состояния) |
(Теорема Реша, 1854[65][66]) |
Для идеального газа
(Формула Майера) |
Remove ads
Каноническое уравнение состояния
Суммиров вкратце
Перспектива
Основная статья: Термодинамические потенциалы.
Каноническое уравнение представляет собой выражение для одного из термодинамических потенциалов (внутренней энергии, энтальпии, свободной энергии или потенциала Гиббса) через независимые переменные, относительно которых записывается его полный дифференциал.
- (для внутренней энергии),
- (для энтальпии),
- (для энергии Гельмгольца),
- (для потенциала Гиббса).
Каноническое уравнение, независимо от того, в каком из этих четырёх видов оно представлено, содержит полную информацию о термических и калорических свойствах термодинамической системы (предполагается, что известно и определение термодинамического потенциала, такое, как F = U − TS).
Remove ads
Уравнения состояния газов
К уравнениям состояния газов относятся:
- Уравнение состояния идеального газа (уравнение Менделеева — Клапейрона)
- Уравнение Ван-дер-Ваальса (уравнение состояния реального газа)
- Уравнение Дитеричи
- Уравнение состояния Редлиха — Квонга
- Уравнение состояния Барнера — Адлера
- Уравнение состояния Суги — Лю
- Уравнение состояния Ли — Эрбара — Эдмистера
Уравнения состояния жидкостей
- Уравнение состояния Бенедикта — Вебба — Рубина
- Модели локального состава (Модель Вильсона, NRTL, UNIQUAC, UNIFAC, Уравнение Цубоки — Катаямы)
Уравнения состояния твёрдых тел
Состояние твёрдых тел можно описать с помощью уравнения Ми — Грюнайзена
См. также
Примечания
Литература
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads