Лучшие вопросы
Таймлайн
Чат
Перспективы
Уравнение четвёртой степени
алгебраическое уравнение Из Википедии, свободной энциклопедии
Remove ads
Уравне́ние четвёртой сте́пени — в математике алгебраическое уравнение вида:

Четвёртая степень для алгебраических уравнений является наивысшей, при которой существует аналитическое решение в радикалах в общем виде (то есть при любых значениях коэффициентов).
Так как функция является многочленом чётной степени, она имеет один и тот же предел при стремлении к плюс и к минус бесконечности. Если , то функция возрастает до плюс бесконечности с обеих сторон, а значит, имеет глобальный минимум. Аналогично, если , то функция убывает до минус бесконечности с обеих сторон, а значит, имеет глобальный максимум.
Remove ads
Корни уравнения
Суммиров вкратце
Перспектива
Над полем комплексных чисел, согласно основной теореме алгебры, уравнение четвертой степени
всегда имеет 4 корня (с учётом кратности).
Свойства корней различаются с помощью знака дискриминанта:
Возможны три случая:
- Если тогда уравнение имеет 4 различных вещественных корня.
- Если то уравнение имеет 4 различных корня, где как минимум 1 из них комплексный.
- Если тогда хотя бы два корня совпадают. Это может быть: один корень кратности 2; один корень кратности 3; один корень кратности 4; два корня кратности 2.
Корни уравнения по теореме Виета для четвёртой степени связаны с коэффициентами следующим образом:
Remove ads
История
Уравнения четвёртой степени впервые были рассмотрены древнеиндийскими математиками между IV в. до н. э. и II в. н. э.
Лодовико Феррари приписывается получение решения уравнения четвёртой степени в 1540 году, но его работа опиралась на решение кубического уравнения, которого у него не было, поэтому сразу это решение не было опубликовано,[1] а было опубликовано только в 1545 вместе с решением кубического уравнения наставника Феррари — Джероламо Кардано в книге «Великое искусство»[2].
То, что это наибольшая степень уравнения, для которого можно указать общую формулу решения, было доказано в теореме Абеля-Руффини в 1824. Записки, оставленные Галуа, позже привели к элегантной теории корней многочленов, одним из результатов которой была эта теорема[3].
Remove ads
Решения
Суммиров вкратце
Перспектива
Решение через резольвенту
Решение уравнения четвёртой степени
сводится к решению кубической резольвенты
Корни резольвенты связаны с корнями исходного уравнения (которые и нужно найти) следующими соотношениями:
Корни резольвенты могут быть найдены по формуле Кардано.
Три формулы соотношений между и вместе с уравнением (соотношение Виета для коэффициента при )
дают систему из 4 алгебраических уравнений с 4 неизвестными, которая легко решается.
Решение Декарта-Эйлера
В уравнении четвёртой степени
сделаем подстановку , получим уравнение в следующем виде (оно называется «неполным»):
где
Корни такого уравнения равны одному из следующих выражений:
в которых сочетания знаков выбираются таким образом, чтобы выполнялось следующее соотношение:
причём — это корни кубического уравнения
Решение Феррари
Решение уравнения четвёртой степени вида может быть найдено по методу Феррари. Если — произвольный корень кубического уравнения
(резольвенты основного уравнения), то четыре корня исходного уравнения находятся как корни двух квадратных уравнений
где подкоренное выражение в правой части является полным квадратом.
Remove ads
Биквадратное уравнение
Суммиров вкратце
Перспектива
Биквадратное уравнение[4] — алгебраическое уравнение четвёртой степени вида , где — заданные комплексные числа и . Иначе говоря, это уравнение четвёртой степени, у которого второй и четвёртый коэффициенты равны нулю. Подстановкой оно сводится к квадратному уравнению относительно .
Четыре его корня находятся по формуле
Remove ads
Возвратные уравнения четвёртой степени
Возвратное уравнение четвёртой степени является также относительно легко решаемым: для такого, что , решение находится приведением к виду:
- ,
После замены ищется решение квадратного уравнения , а затем — квадратного уравнения .
Remove ads
Примечания
Литература
Ссылки
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads