Лучшие вопросы
Таймлайн
Чат
Перспективы

Центральное многообразие

Из Википедии, свободной энциклопедии

Remove ads

Центра́льное многообра́зие особой точки автономного обыкновенного дифференциального уравненияинвариантное многообразие в фазовом пространстве, проходящее через особую точку и касающееся инвариантного центрального подпространства линеаризации дифференциального уравнения.[1] Важный объект изучения теории дифференциальных уравнений и динамических систем. В некотором смысле, вся нетривиальная динамика системы в окрестности особой точки сосредоточена на центральном многообразии.[2]

Remove ads

Формальное определение

Суммиров вкратце
Перспектива

Рассмотрим автономное дифференциальное уравнение с особой точкой 0:

где , — линейный оператор, — гладкая функция класса , причем и . Иными словами, линеаризация векторного поля в особой точке 0.

Подробнее , ...

Согласно классическим результатам линейной алгебры, линейное пространство раскладывается в прямую сумму трех -инвариантных подпространств , где определяются знаком вещественной части соответствующих собственных значений (см. табл.)

Эти подпространства являются инвариантными многообразиями линеаризованной системы , решением которой является матричная экспонента . Оказывается, динамика системы в окрестности особой точки по своим свойствам близка к динамике линеаризованной системы. Точнее, справедливо следующее утверждение:[3][4]

Теорема (о центральном многообразии).

Предположим, что правая часть дифференциального уравнения (*) принадлежит классу , . Тогда в окрестности особой точки существуют многообразия и классов и соответственно, инвариантные относительно фазового потока дифференциального уравнения. Они касаются в начале координат подпространств и и называются устойчивым, неустойчивым и центральным многообразиями соответственно.

В случае, когда правая часть уравнения (*) принадлежит классу , многообразия и также принадлежат классу , но центральное многообразие , вообще говоря, может быть лишь конечно-гладким. При этом для любого сколь угодно большого числа многообразие принадлежит классу в некоторой окрестности , стягивающейся к особой точке при , так что пересечение всех окрестностей состоит лишь из самой особой точки[5].

Устойчивое и неустойчивое инвариантные многообразия называются также гиперболическими, они определяются единственным образом; в то же время, локальное центральное многообразие определяется не единственным образом. Очевидно, что если система (*) линейна, то инвариантные многообразия совпадают с соответствующими инвариантными подпространствами оператора .

Пример: седлоузел

Thumb
Фазовый портрет седлоузловой особой точки. Красным выделено одно из возможных локальных центральных многообразий

Невырожденные особые точки на плоскости не имеют центрального многообразия. Рассмотрим простейший пример вырожденной особой точки: седлоузел вида

Его неустойчивое многообразие совпадает с осью Oy и состоит из двух вертикальных сепаратрис и и самой особой точки. Остальные фазовые кривые задаются уравнением

,

где .

Нетрудно видеть, что в левой полуплоскости единственная фазовая кривая, стремящаяся к особой точке, совпадает с лучом оси Ox . В то же время, в правой полуплоскости существует бесконечно много (континуум) фазовых кривых, стремящихся к нулю — это графики функции y(x) для любого и любого . В силу того, что функция y(x) является плоской в нуле, мы можем составить гладкое инвариантное многообразие из луча , точки (0, 0) и любой траектории в правой полуплоскости. Любое из них локально будет центральным многообразием точки (0, 0).[6]

Remove ads

Глобальные центральные многообразия

Суммиров вкратце
Перспектива

Если рассматривать уравнение (*) не в некоторой окрестности особой точки 0, а во всем фазовом пространстве , можно дать определение глобального центрального многообразия. Неформально говоря, его можно определить как инвариантное многообразие, траектории на котором не стремятся к бесконечности (в прямом либо обратном времени) вдоль гиперболических направлений. В частности, глобальное центральное многообразие содержит все ограниченные траектории (а значит, и все предельные циклы, особые точки, сепаратрисные связки и т.д.) [7]

Рассмотрим проекции пространства на соответствующие инвариантные подпространства оператора . Определим также подпространство и проекцию на него. Центральным многообразием называется множество таких точек фазового пространства, что проекция траекторий, стартующих из , на гиперболическое подпространство, ограничена. Иными словами

,

где — такое решение уравнения (*), что .[8]

Для существования глобального центрального многообразия на функцию необходимо наложить дополнительные условия: ограниченность и липшицевость с достаточно малой константой Липшица. В этом случае глобальное центральное многообразие существует, само является липшицевым подмногообразием в и определено единственным образом.[8] Если потребовать от гладкости порядка и малости производной, то глобальное центральное многообразие будет иметь гладкость порядка и касаться центрального инвариантного подпространства в особой точке 0. Из этого следует, что если рассматривать ограничение глобального центрального многообразия на малую окрестность особой точки, то оно будет локальным центральным многообразием — это один из способов доказательства его существования. Даже если система (*) не удовлетворяет условиям существования глобального центрального многообразия, её можно модифицировать вне какой-то окрестности нуля (домножив на подходящую гладкую срезающую функцию типа «шапочка»), так, чтобы эти условия стали выполняться, и рассмотреть ограничение имеющегося у модифицированной системы глобального центрального многообразия. Оказывается, можно сформулировать и обратное утверждение: можно глобализовать локально заданную систему и продолжить локальное центральное многообразие до глобального.[9] Точнее, это утверждение формулируется следующим образом:[10]

Теорема. Пусть , , , и — локальное центральное многообразие (*). Найдется такая малая окрестность нуля и такая ограниченная на всем пространстве функция , совпадающая с в , что уравнение (*) для функции имеет гладкое глобальное центральное многообразие, совпадающее в области с

Следует отметить, что переход от локальных задач к глобальным и наоборот часто используется при доказательстве утверждений, связанных с центральными многообразиями.

Remove ads

Принцип сведения

Суммиров вкратце
Перспектива

Как было сказано выше, нетривиальная динамика вблизи особой точки «сосредоточена» на центральном многообразии. Если особая точка гиперболическая (то есть линеаризация не содержит собственных значений с нулевой вещественной частью), то центрального многообразия у неё нет. В этом случае, согласно теореме Гробмана-Хартмана, векторное поле орбитально-топологически эквивалентно своей линеаризации, то есть с топологической точки зрения динамика нелинейной системы полностью определяется линеаризацией. В случае негиперболической особой точки топология фазового потока определяется линейной частью и ограничением потока на центральное многообразие. Это утверждение, называемое принципом сведения Шошитайшвили, формулируется следующим образом:[11]

Теорема (А. Н. Шошитайшвили, 1975[12]).

Предположим, что правая часть векторного поля (*) принадлежит классу . Тогда в окрестности негиперболической особой точки оно орбитально-топологически эквивалентно произведению стандартного седла и ограничению поля на центральное многообразие:

Remove ads

Примечания

Литература

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads