Лучшие вопросы
Таймлайн
Чат
Перспективы

T-критерий Уэлча

Из Википедии, свободной энциклопедии

Remove ads

t-критерий Уэлча — тест, основанный на распределении Стьюдента и предназначенный для проверки статистической гипотезы о равенстве математических ожиданий случайных величин, имеющих необязательно равные известные дисперсии. Является модификацией t-критерия Стьюдента. Назван в честь британского статистика Бернарда Льюиса Уэлча.

Предпосылки

Для применения двухвыборочного t-критерия Стьюдента необходимо, чтобы истинные дисперсии были равны. В случае t-критерия Уэлча истинные дисперсии уже могут быть не равны, но предпосылка о нормальном распределении средних сохраняется.

Вычисление статистики

Суммиров вкратце
Перспектива

Пусть даны две независимые выборки нормально распределённых случайных величин:

Проверяем следующую нулевую гипотезу о равенстве математический ожиданий:

Пусть нулевая гипотеза верна. Тогда и . Пусть и  — несмещенные оценки дисперсий и соответственно. Рассчитаем следующую статистику:

Сделаем следующее преобразование:

Распределение первой статистики является стандартным нормальным распределением:

Рассмотрим вторую статистику и для дальнейших вычислений назовем её :

Статистика напоминает случайную величину с распределением хи-квадрат, поделенную на степень свободы, но таковой не является. Пусть является случайной величиной с распределением хи-квадрат с степенями свободы. Тогда , равно как и . Теперь заметим, что (так как мы используем несмещенные оценки дисперсий), а .

Раз мы хотим, чтобы была максимально похожа на , то приравняем дисперсии данных случайных величин:

Рассчитаем дисперсию случайной величины :

Отсюда:

В конечном итоге имеем при справедливости нулевой гипотезы:

,

где находится как:

При достаточно больших объёмах выборок мы можем воспользоваться нормальной аппроксимацией:

Remove ads

Двухвыборочный t-критерий Уэлча для независимых выборок

Суммиров вкратце
Перспектива

Пусть даны две независимые выборки нормально распределённых случайных величин:

При нулевой гипотезе мы рассчитываем следующую статистику:

Пусть альтернативная гипотеза .

При справедливости нулевой гипотезы распределение будет приблизительно являться распределением Стьюдента с степенями свободы:

,

где находится как:

Следовательно, при превышении значения наблюдаемой статистики по абсолютной величине критического значения данного распределения (при заданном уровне значимости) нулевая гипотеза отвергается.

Remove ads

Пример

Суммиров вкратце
Перспектива

В следующих примерах будем сравнивать t-критерий Стьюдента и t-критерий Уэлча. Выборки сгенерированы модулем numpy.random для языка программирования Python.

Для всех трех примеров математические ожидания будут равны и соответственно.

В первом примере истинные дисперсии равны () и объёмы выборок равны (). Обозначим за и как соответствующие случайные выборки:

Во втором примере истинные дисперсии неравны (, ) и неравные объёмы у выборок (,). У меньшей выборки большая дисперсия:

В третьем примере истинные дисперсии неравны (, ) и неравные объёмы у выборок (,). У большей выборки большая дисперсия:

Подробнее Выборка ...

Для равных дисперсий и равных объёмов выборок t-критерий Стьюдента и t-критерий Уэлча выдали примерно одинаковый результат (пример 1). Для неравных дисперсий t-критерий Уэлча точнее оценивает истинное распределение статистики, чем t-критерий Стьюдента (-value для t-критерия Уэлча ближе к моделированной -value, чем для t-критерия Стьюдента).

Если неизвестно, равны ли дисперсии двух генеральных совокупностей, крайне не рекомендуется проводить пре-тесты для определения равенства дисперсий, а лучше сразу использовать t-критерий Уэлча.[1]

Remove ads

Реализация в различных ПО

Подробнее Язык программирования / ПО, Функция ...
Remove ads

Литература

B. L. Welch The Generalization of `Student’s' Problem when Several Different Population Variances are Involved // Vol. 34, No. 1/2 (Jan., 1947), pp. 28-35

Примечания

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads