Лучшие вопросы
Таймлайн
Чат
Перспективы
Теорема Фенхеля о повороте кривой
Из Википедии, свободной энциклопедии
Remove ads
Теорема Фенхеля утверждает, что вариация поворота любой замкнутой кривой не меньше и равенство достигается только в случае выпуклой плоской кривой. В частности, средняя кривизна замкнутой кривой длины не может быть меньше .
Теорема доказана Вернером Фенхелем.[1]
Remove ads
О доказательстве
Обычно доказательство строится на утверждении, что сферическая кривая длины меньше чем лежит в открытой полусфере. Это утверждение можно доказать например применением формулы Крофтона, но известны и более элементарные доказательства.
Остаётся заметить что кривая образованная единичными касательными векторами (касательная индикатриса) к исходной кривой не может лежать в открытой полусфере. Значит её длина не меньше , длина же этой кривой совпадает с интегралом кривизны.
Remove ads
Вариации и обобщения
- Лемма Решетняка о хорде. Если регулярная гладкая подходит к своей хорде под углами и , то поворот кривой хотя бы .
- Это утверждение легко следует из теоремы Фенхеля, но зачастую его удобней использовать. Например сама теорема Фенхеля следует если применить лемму к разбиению замкнутой кривой на две дуги.
Remove ads
Примечания
Литература
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads