Лучшие вопросы
Таймлайн
Чат
Перспективы

Уравнение в функциональных производных

Из Википедии, свободной энциклопедии

Remove ads

Уравнение в функциональных производных — обобщение понятия дифференциального уравнения на случай бесконечного множества переменных. Применяется в функциональном анализе и теоретической физике (уравнение Швингера — Томонаги, уравнения Швингера).

Обыкновенное уравнение в функциональных производных получается с помощью предельного перехода к бесконечному множеству переменных из уравнения в полных дифференциалах[1]:

(1),

где: и коэффициенты являются функциями от переменных .

При переходе к пределу в уравнении (1) сумма превратится в интеграл и оно примет вид:

(2),

где: - неизвестный функционал от функции , - переменная интегрирования.

При помощи понятия функциональной производной это уравнение можно записать в виде:

(3),

где: - функциональная производная.

Если семейство функций принадлежит пространству и зависит от числового параметра, то уравнение в функциональных производных превращается в дифференциальное уравнение первого порядка, которое удобно решать методом последовательных приближений[2].

Если функционал зависит не только от функции , но и от одного или нескольких числовых параметров, то уравнение в функциональных производных превращается в интегро-дифференциальное уравнение, для решения которого также можно использовать метод последовательных приближений[3].

Remove ads

Примечания

Литература

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads