Value | Name | Symbol | LaTeX | Formula | Type | OEIS | Continued fraction |
3.24697960371746706105000976800847962 |
Silver, Tutte–Beraha constant |
 |
![{\displaystyle 2+2\cos(2\pi /7)=\textstyle 2+{\frac {2+{\sqrt[{3}]{7+7{\sqrt[{3}]{7+7{\sqrt[{3}]{\,7+\cdots }}}}}}}{1+{\sqrt[{3}]{7+7{\sqrt[{3}]{7+7{\sqrt[{3}]{\,7+\cdots }}}}}}}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/63c2ba5c39dd844946fe3ac7702fa5e6b6460472) |
2+2 cos(2Pi/7)
|
I |
A116425 |
[3;4,20,2,3,1,6,10,5,2,2,1,2,2,1,18,1,1,3,2,...] |
1.09864196439415648573466891734359621 |
Paris constant |
 |
 |
|
I |
A105415 |
[1;10,7,3,1,3,1,5,1,4,2,7,1,2,3,22,1,2,5,2,1,...] |
2.74723827493230433305746518613420282 |
Ramanujan nested radical R5 |
 |
 |
(2+sqrt(5)+sqrt(15-6 sqrt(5)))/2 |
I |
|
[2;1,2,1,21,1,7,2,1,1,2,1,2,1,17,4,4,1,1,4,2,...] |
2.23606797749978969640917366873127624 |
Square root of 5, Gauss sum |
 |
 |
Sum[k=0 to 4]{e^(2k^2 pi i/5)} |
I |
A002163 |
[2;4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,...] = [2;(4),...] |
3.62560990822190831193068515586767200 |
Gamma(1/4) |
 |
 |
4(1/4)! |
T |
A068466 |
[3;1,1,1,2,25,4,9,1,1,8,4,1,6,1,1,19,1,1,4,1,...] |
0.18785964246206712024851793405427323 |
MRB constant, Marvin Ray Burns |
 |
![{\displaystyle \sum _{n=1}^{\infty }({-}1)^{n}(n^{1/n}{-}1)=-{\sqrt[{1}]{1}}+{\sqrt[{2}]{2}}-{\sqrt[{3}]{3}}+{\sqrt[{4}]{4}}\,\dots }](//wikimedia.org/api/rest_v1/media/math/render/svg/870bc7fa0415cfa4f3c3fb9253254c65e8e9d967) |
Sum[n=1 to ∞]{(-1)^n (n^(1/n)-1)} |
T |
A037077 |
[0;5,3,10,1,1,4,1,1,1,1,9,1,1,12,2,17,2,2,1,...] |
0.11494204485329620070104015746959874 |
Kepler–Bouwkamp constant |
 |
 |
prod[n=3 to ∞]{cos(pi/n)} |
T |
A085365 |
[0;8,1,2,2,1,272,2,1,41,6,1,3,1,1,26,4,1,1,...] |
1.78107241799019798523650410310717954 |
Exp(gamma) G-Barnes function |
 |

|
Prod[n=1 to ∞]{e^(1/n)}/{1 + 1/n} |
T |
A073004 |
[1;1,3,1,1,3,5,4,1,1,2,2,1,7,9,1,16,1,1,1,2,...] |
1.28242712910062263687534256886979172 |
Glaisher–Kinkelin constant |
 |
 |
e^(1/2-zeta´{-1}) |
T |
A074962 |
[1;3,1,1,5,1,1,1,3,12,4,1,271,1,1,2,7,1,35,...] |
7.38905609893065022723042746057500781 |
Schwarzschild conic constant |
 |
 |
Sum[n=0 to ∞]{2^n/n!} |
T |
A072334 |
[7;2,1,1,3,18,5,1,1,6,30,8,1,1,9,42,11,1,...] = [7,2,(1,1,n,4*n+6,n+2)], n = 3, 6, 9, etc. |
1.01494160640965362502120255427452028 |
Gieseking constant |
 |
.
|
|
T |
A143298 |
[1;66,1,12,1,2,1,4,2,1,3,3,1,4,1,56,2,2,11,...] |
2.62205755429211981046483958989111941 |
Lemniscata constant |
 |
 |
4 sqrt(2/pi) (1/4!)^2 |
T |
A062539 |
[2;1,1,1,1,1,4,1,2,5,1,1,1,14,9,2,6,2,9,4,1,...] |
0.83462684167407318628142973279904680 |
G, Gauss constant |
 |
 |
(4 sqrt(2)(1/4!)^2)/pi^(3/2) |
T |
A014549 |
[0;1,5,21,3,4,14,1,1,1,1,1,3,1,15,1,3,7,1,...] |
1.01734306198444913971451792979092052 |
Zeta(6) |
 |
 |
Prod[n=1 to ∞] {1/(1-ithprime(n)^-6)} |
T |
A013664 |
[1;57,1,1,1,15,1,6,3,61,1,5,3,1,6,1,3,3,6,1,...] |
0,60792710185402662866327677925836583
|
Constante de Hafner-Sarnak-McCurley |
 |
 |
Prod{n=1 to ∞} (1-1/ithprime(n)^2) |
T |
A059956 |
[0;1,1,1,1,4,2,4,7,1,4,2,3,4,10,1,2,1,1,1,...] |
1.11072073453959156175397024751517342 |
The ratio of a square and circumscribed or inscribed circles |
 |
 |
sum[n=1 to ∞]{(-1)^(floor((n-1)/2))/(2n-1)} |
T |
A093954 |
[1;9,31,1,1,17,2,3,3,2,3,1,1,2,2,1,4,9,1,3,...] |
2.80777024202851936522150118655777293 |
Fransén–Robinson constant |
 |
 |
N[int[0 to ∞] {1/Gamma(x)}] |
T |
A058655 |
[2;1,4,4,1,18,5,1,3,4,1,5,3,6,1,1,1,5,1,1,1...] |
1.64872127070012814684865078781416357 |
Square root of e |
 |
 |
sum[n=0 to ∞]{1/(2^n n!)} |
T |
A019774 |
[1;1,1,1,5,1,1,9,1,1,13,1,1,17,1,1,21,1,1,...] = [1;1,(1,1,4p+1)], p∈ℕ |
i
|
i, imaginary unit |
 |
 |
sqrt(-1) |
C |
|
|
262537412640768743.999999999999250073 |
Hermite-Ramanujan constant |
 |
 |
e^(π sqrt(163)) |
T |
A060295 |
[262537412640768743;1,1333462407511,1,8,1,1,5,...] |
4.81047738096535165547303566670383313 |
John constant |
 |
![{\displaystyle {\sqrt[{i}]{i}}=i^{-i}=i^{\frac {1}{i}}=(i^{i})^{-1}=e^{\frac {\pi }{2}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/904fff5ea95018fde18c45c94097a379edad291e) |
e^(π/2) |
T |
A042972 |
[4;1,4,3,1,1,1,1,1,1,1,1,7,1,20,1,3,6,10,3,...] |
4.53236014182719380962768294571666681 |
Constante de Van der Pauw |
 |
 |
π/ln(2) |
T |
A163973 |
[4;1,1,7,4,2,3,3,1,4,1,1,4,7,2,3,3,12,2,1,...] |
0.76159415595576488811945828260479359 |
Hyperbolic tangent (1) |
 |
 |
(e-1/e)/(e+1/e) |
T |
A073744 |
[0;1,3,5,7,9,11,13,15,17,19,21,23,25,27,...] = [0;(2p+1)], p∈ℕ |
0.69777465796400798200679059255175260 |
Continued Fraction constant |
 |
 |
(sum {n=0 to inf} n/(n!n!)) /(sum {n=0 to inf} 1/(n!n!)) |
|
A052119 |
[0;1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,...] = [0;(p+1)], p∈ℕ |
0.36787944117144232159552377016146086 |
Inverse Napier constant |
 |
|
sum[n=2 to ∞]{(-1)^n/n!} |
T |
A068985 |
[0;2,1,1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,...] = [0;2,1,(1,2p,1)], p∈ℕ |
2.71828182845904523536028747135266250 |
Napier constant |
 |
 |
Sum[n=0 to ∞]{1/n!} |
T |
A001113 |
[2;1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,1,...] = [2;(1,2p,1)], p∈ℕ |
0.49801566811835604271369111746219809 - 0.15494982830181068512495513048388 i |
Factorial of i |
 |
 |
Gamma(1+i) |
C |
A212877 A212878 |
[0;6,2,4,1,8,1,46,2,2,3,5,1,10,7,5,1,7,2,...] - [0;2,125,2,18,1,2,1,1,19,1,1,1,2,3,34,...] i |
0.43828293672703211162697516355126482 + 0.36059247187138548595294052690600 i |
Infinite Tetration of i |
 |
 |
i^i^i^... |
C |
A077589 A077590 |
[0;2,3,1,1,4,2,2,1,10,2,1,3,1,8,2,1,2,1, ...] + [0;2,1,3,2,2,3,1,5,5,1,2,1,10,10,6,1,1...] i |
0.56755516330695782538461314419245334 |
Module of Infinite Tetration of i |
 |
 |
Mod(i^i^i^...) |
|
A212479 |
[0;1,1,3,4,1,58,12,1,51,1,4,12,1,1,2,2,3,...] |
0.26149721284764278375542683860869585 |
Meissel-Mertens constant |
 |
..... p: primes |
|
| A077761 |
[0;3,1,4,1,2,5,2,1,1,1,1,13,4,2,4,2,1,33,...] |
1.9287800... |
Wright constant |
 |
= primos: =3, =13, =16381,  |
|
|
A086238 |
[1; 1, 13, 24, 2, 1, 1, 3, 1, 1, 3] |
0.37395581361920228805472805434641641 |
Artin constant |
 |
...... pn: primo |
|
T |
A005596 |
[0;2,1,2,14,1,1,2,3,5,1,3,1,5,1,1,2,3,5,46,...] |
4.66920160910299067185320382046620161 |
Feigenbaum constant δ |
 |

|
|
T |
A006890 |
[4;1,2,43,2,163,2,3,1,1,2,5,1,2,3,80,2,5,...] |
2.50290787509589282228390287321821578 |
Feigenbaum constant α |
 |
 |
|
T |
A006891 |
[2;1,1,85,2,8,1,10,16,3,8,9,2,1,40,1,2,3,...] |
5.97798681217834912266905331933922774 |
Hexagonal Madelung Constant 2 |
 |
 |
Pi Log[3]Sqrt[3] |
T |
A086055 |
[5;1,44,2,2,1,15,1,1,12,1,65,11,1,3,1,1,...] |
0.96894614625936938048363484584691860 |
Beta(3) |
 |
 |
Sum[n=1 to ∞]{(-1)^(n+1)/(-1+2n)^3} |
T |
A153071 |
[0;1,31,4,1,18,21,1,1,2,1,2,1,3,6,3,28,1,...] |
1.902160583104 |
Brun constant 2 = Σ inverse twin primes |
 |
 |
|
|
A065421 |
[1; 1, 9, 4, 1, 1, 8, 3, 4, 4, 2, 2] |
0.870588379975 |
Brun constant 4 = Σ inverse of twin prime |
 |
 |
|
|
A213007 |
[0; 1, 6, 1, 2, 1, 2, 956, 3, 1, 1] |
22.4591577183610454734271522045437350 |
pi^e |
 |
 |
pi^e |
|
A059850 |
[22;2,5,1,1,1,1,1,3,2,1,1,3,9,15,25,1,1,5,...] |
3.14159265358979323846264338327950288 |
Pi, Archimedes constant |
 |
 |
Sum[n=0 to ∞]{(-1)^n 4/(2n+1)} |
T |
A000796 |
[3;7,15,1,292,1,1,1,2,1,3,1,14,...] |
0.06598803584531253707679018759684642 |
|
 |
... Lower limit of Tetration |
|
T |
A073230 |
[0;15,6,2,13,1,3,6,2,1,1,5,1,1,1,9,4,1,1,1,...] |
0.20787957635076190854695561983497877 |
i^i |
 |
 |
e^(-pi/2) |
T |
A049006 |
[0;4,1,4,3,1,1,1,1,1,1,1,1,7,1,20,1,3,6,10,...] |
0.28016949902386913303643649123067200 |
Bernstein constant |
 |
 |
|
T |
A073001 |
[0;3,1,1,3,9,6,3,1,3,13,1,16,3,3,4,…] |
0.28878809508660242127889972192923078 |
Flajolet and Richmond |
 |
 |
prod[n=1 to ∞]{1-1/2^n} |
|
A048651 |
|
0.31830988618379067153776752674502872 |
Inverse of Pi, Ramanujan |
 |
 |
|
T |
A049541 |
[0;3,7,15,292,1,1,1,2,1,3,1,14,2,1,1,...] |
0.47494937998792065033250463632798297 |
Weierstraß constant |
 |
 |
(E^(Pi/8) Sqrt[Pi])/(4 2^(3/4) (1/4)!^2) |
T |
A094692 |
[0;2,9,2,11,1,6,1,4,6,3,19,9,217,1,2,...] |
0.56714329040978387299996866221035555 |
Omega constant |
 |
 |
sum[n=1 to ∞]{(-n)^(n-1)/n!} |
T |
A030178 |
[0;1,1,3,4,2,10,4,1,1,1,1,2,7,306,1,5,1,...] |
0.57721566490153286060651209008240243 |
Euler's number |
 |
 |
sum[n=1 to ∞]|sum[k=0 to ∞]{((-1)^k)/(2^n+k)} |
? |
A001620 |
[0;1,1,2,1,2,1,4,3,13,5,1,1,8,1,2,...] |
0.60459978807807261686469275254738524 |
Dirichlet serie |
 |
 |
Sum[1/(n Binomial[2 n, n]), {n, 1, ∞}] |
T |
A073010 |
[0;1,1,1,1,8,10,2,2,3,3,1,9,2,5,4,1,27,27,...] |
0.63661977236758134307553505349005745 |
2/Pi, François Viète |
 |
 |
|
T |
A060294 |
[0;1,1,1,3,31,1,145,1,4,2,8,1,6,1,2,3,1,4,...] |
0.66016181584686957392781211001455577 |
Twin prime constant |
 |
 |
prod[p=3 to ∞]{p(p-2)/(p-1)^2 |
|
A005597 |
[0;1,1,1,16,2,2,2,2,1,18,2,2,11,1,1,2,4,1,...] |
0.66274341934918158097474209710925290 |
Laplace Limit constant |
 |
|
|
|
A033259 |
[0;1,1,1,27,1,1,1,8,2,154,2,4,1,5,...] |
0.69314718055994530941723212145817657 |
Logarithm de 2 |
 |
 |
Sum[n=1 to ∞]{(-1)^(n+1)/n} |
T |
A002162 |
[0;1,2,3,1,6,3,1,1,2,1,1,1,1,3,10,...] |
0.78343051071213440705926438652697546 |
Sophomore's Dream 1 J.Bernoulli |
 |
 |
Sum[ -(-1)^n /n^n] |
T |
A083648 |
[0;1,3,1,1,1,1,1,1,2,4,7,2,1,2,1,1,1,...] |
0.78539816339744830961566084581987572 |
Dirichlet beta(1) |
 |
 |
Sum[n=0 to ∞]{(-1)^n/(2n+1)} |
T |
A003881 |
[0; 1,3,1,1,1,15,2,72,1,9,1,17,1,2,1,5,...] |
0.82246703342411321823620758332301259 |
Traveling Salesman Nielsen-Ramanujan |
 |
 |
Sum[n=1 to ∞]{((-1)^(k+1))/n^2} |
T |
A072691 |
[0;1,4,1,1,1,2,1,1,1,1,3,2,2,4,1,1,1,...] |
0.91596559417721901505460351493238411 |
Catalan constant |
 |
 |
Sum[n=0 to ∞]{(-1)^n/(2n+1)^2} |
I |
A006752 |
[0;1,10,1,8,1,88,4,1,1,7,22,1,2,...] |
1.05946309435929526456182529494634170 |
Ratio of the distance between semi-tones |
![{\displaystyle {\sqrt[{12}]{2}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/bc835f27425fb3140e1f75a5faa35b1e8b9efc35) |
![{\displaystyle {\sqrt[{12}]{2}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/bc835f27425fb3140e1f75a5faa35b1e8b9efc35) |
2^(1/12) |
I |
A010774 |
[1;16,1,4,2,7,1,1,2,2,7,4,1,2,1,60,1,3,1,2,...] |
1,.08232323371113819151600369654116790 |
Zeta(04) |
 |
 |
Sum[n=1 to ∞]{1/n^4} |
T |
A013662 |
[1;12,6,1,3,1,4,183,1,1,2,1,3,1,1,5,4,2,7,...] |
1.1319882487943 ... |
Viswanaths Archived 2013-04-13 at the Wayback Machine constant |
 |
 |
|
|
A078416 |
[1;7,1,1,2,1,3,2,1,2,1,8,1,5,1,1,1,9,1,...] |
1.20205690315959428539973816151144999 |
Apéry constant |
 |
 |
Sum[n=1 to ∞]{1/n^3} |
I |
A010774 |
[1;4,1,18,1,1,1,4,1,9,9,2,1,1,1,2,...] |
1.22541670246517764512909830336289053 |
Gamma(3/4) |
 |
 |
(-1+3/4)! |
T |
A068465 |
[1;4,2,3,2,2,1,1,1,2,1,4,7,1,171,3,2,3,1,1,...] |
1.23370055013616982735431137498451889 |
Favard constant |
 |
 |
sum[n=1 to ∞]{1/((2n-1)^2)} |
T |
A111003 |
[1;4,3,1,1,2,2,5,1,1,1,1,2,1,2,1,10,4,3,1,1,...] |
1.25992104989487316476721060727822835 |
Cube root of 2, constante Delian |
![{\displaystyle {\sqrt[{3}]{2}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/9ca071ab504481c2bb76081aacb03f5519930710) |
![{\displaystyle {\sqrt[{3}]{2}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/9ca071ab504481c2bb76081aacb03f5519930710) |
2^(1/3) |
I |
A002580 |
[1;3,1,5,1,1,4,1,1,8,1,14,1,10,...] |
1.29128599706266354040728259059560054 |
Sophomore's Dream 2 J.Bernoulli |
 |
 |
Sum[1/(n^n]), {n, 1, ∞}] |
|
A073009 |
[1;3,2,3,4,3,1,2,1,1,6,7,2,5,3,1,2,1,8,1,...] |
1.32471795724474602596090885447809734 |
Plastic number |
 |
![{\displaystyle {\sqrt[{3}]{1+{\sqrt[{3}]{1+{\sqrt[{3}]{1+{\sqrt[{3}]{1+\cdots }}}}}}}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/fe5c1cba04372927a214a2ce1b1d6b213bb12ee3) |
|
I |
A060006 |
[1;3,12,1,1,3,2,3,2,4,2,141,80,2,5,1,2,8,...] |
1.41421356237309504880168872420969808 |
Square root of 2, Pythagoras constant |
 |
 |
prod[n=1 to ∞]{1+(-1)^(n+1)/(2n-1)} |
I |
A002193 |
[1;2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,...] = [1;(2),...] |
1.44466786100976613365833910859643022 |
Steiner number |
 |
... Upper Limit of Tetration |
|
|
A073229 |
[1;2,4,55,27,1,1,16,9,3,2,8,3,2,1,1,4,1,9,...] |
1.53960071783900203869106341467188655 |
Lieb's Square Ice constant |
 |
 |
(4/3)^(3/2) |
I |
A118273 |
[1;1,1,5,1,4,2,1,6,1,6,1,2,4,1,5,1,1,2,...] |
1.57079632679489661923132169163975144 |
Wallis product |
 |
 |
|
T |
A019669 |
[1;1,1,3,31,1,145,1,4,2,8,1,6,1,2,3,1...] |
1.60669515241529176378330152319092458 |
Erdős–Borwein constant |
 |
 |
sum[n=1 to ∞]{1/(2^n-1)} |
I |
A065442 |
[1;1,1,1,1,5,2,1,2,29,4,1,2,2,2,2,6,1,7,1,...] |
1.61803398874989484820458633436563812 |
Phi, Golden ratio |
 |
 |
(1+5^(1/2))/2 |
I |
A001622 |
[0;1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,...] = [0;(1),...] |
1.64493406684822643647241516664602519 |
Zeta(2) |
 |
 |
Sum[n=1 to ∞]{1/n^2} |
T |
A013661 |
[1;1,1,1,4,2,4,7,1,4,2,3,4,10 1,2,1,1,1,15,...] |
1.66168794963359412129581892274995074 |
Somos' quadratic recurrence constant |
 |
 |
|
T |
A065481 |
[1;1,1,1,21,1,1,1,6,4,2,1,1,2,1,3,1,13,13,...] |
1.73205080756887729352744634150587237 |
Theodorus constant |
 |
 |
3^(1/2) |
I |
A002194 |
[1;1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,...] = [1;(1,2),...] |
1.75793275661800453270881963821813852 |
Kasner number |
 |
 |
|
|
A072449 |
[1;1,3,7,1,1,1,2,3,1,4,1,1,2,1,2,20,1,2,2,...] |
1.77245385090551602729816748334114518 |
Carlson-Levin constant |
 |
 |
sqrt (pi) |
T |
A002161 |
[1;1,3,2,1,1,6,1,28,13,1,1,2,18,1,1,1,83,1,...] |
2.29558714939263807403429804918949038 |
P, Universal parabolic constant |
 |
 |
ln(1+sqrt 2)+sqrt 2 |
T |
A103710 |
[2;3,2,1,1,1,1,3,3,1,1,4,2,3,2,7,1,6,1,8,...] |
2.30277563773199464655961063373524797 |
Bronze Number |
 |
 |
(3+sqrt 13)/2 |
I |
A098316 |
[3;3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,...] = [3;(3),...] |
2.37313822083125090564344595189447424 |
Lévy constant2 |
 |
 |
Pi^(2)/(6*ln(2)) |
T |
A174606 |
[2;2,1,2,8,57,9,32,1,1,2,1,2,1,2,1,2,1,3,2,...] |
2.50662827463100050241576528481104525 |
square root of 2 pi |
 |
 |
sqrt (2*pi) |
T |
A019727 |
[2;1,1,37,4,1,1,1,1,9,1,1,2,8,6,1,2,2,1,3,...] |
2.66514414269022518865029724987313985 |
Gelfond-Schneider constant |
 |
 |
2^sqrt{2} |
T |
A007507 |
[2;1,1,1,72,3,4,1,3,2,1,1,1,14,1,2,1,1,3,1,...] |
2.68545200106530644530971483548179569 |
Khintchin constant |
 |
![{\displaystyle \prod _{n=1}^{\infty }\left[{1+{1 \over n(n+2)}}\right]^{\ln n/\ln 2}}](//wikimedia.org/api/rest_v1/media/math/render/svg/cbfef25fcd2817842f1c50956dc798248c418be6) |
prod[n=1 to ∞]{(1+1/(n(n+2)))^((ln(n)/ln(2))} |
? |
A002210 |
[2;1,2,5,1,1,2,1,1,3,10,2,1,3,2,24,1,3,2,...] |
3.27582291872181115978768188245384386 |
Khinchin-Lévy constant |
 |
 |
e^(\pi^2/(12 ln(2)) |
|
A086702 |
[3;3,1,1,1,2,29,1,130,1,12,3,8,2,4,1,3,55,...] |
3.35988566624317755317201130291892717 |
Reciprocal Fibonacci constant |
 |
 |
|
|
A079586 |
[3;2,1,3,1,1,13,2,3,3,2,1,1,6,3,2,4,362,...] |
4.13273135412249293846939188429985264 |
Root of 2 e pi |
 |
 |
sqrt(2e pi) |
T |
A019633 |
[4;7,1,1,6,1,5,1,1,1,8,3,1,2,2,15,2,1,1,2,4,...] |
6.58088599101792097085154240388648649 |
Froda constant |
 |
 |
2^e |
|
|
[6;1,1,2,1,1,2,3,1,14,11,4,3,1,1,7,5,5,2,7,...] |
9.86960440108935861883449099987615114 |
Pi Squared |
 |
 |
6 Sum[n=1 to ∞]{1/n^2} |
T |
A002388 |
[9;1,6,1,2,47,1,8,1,1,2,2,1,1,8,3,1,10,5,...] |
23.1406926327792690057290863679485474 |
Gelfond constant |
 |
 |
Sum[n=0 to ∞]{(pi^n)/n!} |
T |
A039661 |
[23;7,9,3,1,1,591,2,9,1,2,34,1,16,1,30,1,...] |