அடுக்கேற்றம்

From Wikipedia, the free encyclopedia

அடுக்கேற்றம்
Remove ads

அடுக்கேற்றம் (Exponentiation) என்பது ஒரு கணிதச் செயல். இதை bn என்று குறிப்பது வழக்கம். இதில், b என்பதை அடிமானம் அல்லது அடி எனவும், nஅடுக்கு அல்லது படி எனவும் அழைப்பர். n நேர் முழு எண்ணாக இருக்கும்போது, அடுக்கேற்றம், bn தடவைகள் தொடர்ச்சியாகப் பெருக்குவதாக இருக்கும்.[1]

Thumb
அடி b இன் வெவ்வேறு மதிப்புகளுக்கு y = bx சார்பின் வரைபடம்:
 
 10 அடிமானம்,
 
 e அடிமானம்,
 
 2 அடிமானம்,
 
 12 இன் அடிமானம்.
எந்தவொரு எண்ணையும் 0 அடுக்குக்கு உயர்த்தும்போது அதன் மதிப்பு 1 என்பதால் படத்திலுள்ள ஒவ்வொரு கோட்டுருவும் (0, 1) என்ற புள்ளி வழியேச் செல்கிறது. எந்தவொரு எண்ணின் அடுக்கும் 1 ஆக இருந்தால் அதன் மதிப்பு அதே எண்ணாக இருக்கும் என்பதால் x = 1 எனும்போது y இன் மதிப்பு அந்தந்த அடிமான எண்களுக்குச் சமமாக இருக்கிறது.

பொதுவாக அடுக்கானது, அடிமான எண்ணின் வலப்பக்கத்தில் மேலெழுத்தாகக் குறிக்கப்படும். bn என்னும் அடுக்கேற்றத்தை b இன் n ஆவது அடுக்கு என்றோ, b இன் n ஆம் படி என்றோ வாசிப்பது வழக்கம்.[1][2][3] சில இடங்களில் சில அடுக்கேற்றங்கள் அவற்றுக்கே உரிய தனியான சொற்களால் குறிப்பிடப்படுகின்றன. எடுத்துக்காட்டாக b இன் அடுக்கு இரண்டு (b2) என்பது b இன் வர்க்கம் எனவும், b இன் அடுக்கு 3 (b3) என்பது b இன் கனம் எனவும் குறிக்கப்படுகிறது.

  • b1 = b
  • m, n இரு நேர்ம எண்களெனில்,
bnbm = bn+m.

இப்பண்பினை நேர்மமில்லா முழு எண்களுக்கும் நீட்டிக்கக் கீழுள்ள முடிவுகள் வரையறுக்கப்படுகின்றன:

b0 = 1
bn = 1/bn (n நேர்ம எண்; b பூச்சியமற்ற எண்) குறிப்பாக,
b−1 = 1/b (b இன் பெருக்கல் நேர்மாறு).

மெய்யெண் மற்றும் சிக்கலெண் அடுக்குகளுக்கும் அடுக்கேற்றத்தை நீட்டிக்கலாம். முழு எண் அடுக்கேற்றமானது அணிகள் உட்பட பல இயற்கணித அமைப்புகளுக்கு வரையறுக்கப்படுகிறது. பொருளியல், உயிரியல், வேதியியல், இயற்பியல், கணினியியல் போன்ற பலதுறைகளில் அடுக்கேற்றம் பயன்படுகிறது.

Remove ads

சொல்லியல்

b அலகு பக்க நீளங்கொண்ட சதுரத்தின் பரப்பளவு b2 ஆகும். எனவே b2 = bb என்பது " b இன் வர்க்கம் என அழைக்கப்படுகிறது. இதேபோல b பக்க நீளங்கொண்ட கனசதுரத்தின் கனவளவு b3 என்பதால் b3 = bbb ஆனது " b இன் கனம்" என அழைக்கப்படுகிறது.

அடுக்கு ஒரு இயல் எண்ணாக இருக்கும்போது அது, அடி எண்ணை மீண்டும் மீண்டும் எத்தனை முறை பெருக்கவேண்டும் என்பதைக் குறிக்கிறது. எடுத்துக்காட்டாக,

35 = 3 ⋅ 3 ⋅ 3 ⋅ 3 ⋅ 3 = 243.

35 என்பது "3 இன் அடுக்கு 5" அல்லது 3 இன் 5 ஆம் அடுக்கு என வாசிக்கப்படுகிறது. பொதுவாக bn என்பதுதை "b இன் n ஆம் அடுக்கு" என வாசிக்க வேண்டும்.

Remove ads

முழு எண் அடுக்குகள்

முழு எண் அடுக்குகளுடைய அடுக்கேற்றச் செயல் எண்கணிதச் செயல்களைக் கொண்டு வரையறுக்கப்படுகிறது.

நேர்ம அடுக்குகள்

மற்றும் ஆகிய இரு அடிப்படை முடிவுகளைக்கொண்டு நேர்ம முழுவெண் அடுக்கேற்றம் வரையறுக்கப்படுகிறது[4]. மேலும் பெருக்கலின் சேர்ப்புப் பண்பின்படி கீழ்வரும் முடிவு பெறப்படுகிறது:

m, n இரு நேர்ம முழுவெண்களெனில்,

பூச்சிய அடுக்கு

பூச்சியமற்ற எந்தவொரு முழுஎண்ணையும் அடுக்கு 0 க்கு உயர்த்தும்போது அதன் மதிப்பு 1 ஆகிறது:[1][5]

எதிர்ம அடுக்குகள்

b பூச்சியமற்றது எனில் கீழ்வரும் முற்றொருமை உண்மையாகும்:

(n ஒரு முழுவெண்).[1]

பூச்சியத்தை எதிர்ம அடுக்குக்கு உயர்த்துவது வரையறுக்கப்படவில்லை, சில சூழல்களில் அதன் மதிப்பு முடிவிலியாகக் () கருதப்படுகிறது. இந்த முற்றொருமையைப் பின்னுள்ளவாறு வருவிக்கலாம்.

b பூச்சிய மதிப்பற்றது; n ஒரு நேர்ம முழு எண் எனில் கிடைக்கும் மீள்வரு தொடர்பு:

இதனை மாற்றியெழுத:

எந்தவொரு பூச்சியமற்ற b மற்றும் முழுவெண் n இரண்டுக்கும் இம்மீள்வரும் தொடர்பை உண்மையானதாக வரையறுக்க:

முற்றொருமைகளும் பண்புகளும்

அடி எண் பூச்சியமற்றதாக இருக்கும்பொழுது எந்தவொரு முழுவெண் அடுக்கிற்கும் கீழுள்ள முற்றொருமைகள் பொருந்தும்:[1]

(23)4 = 84 = 4096
2(34) = 281 = 2417851639229258349412352.
  • அடுக்கேற்றத்தில் அடைப்புக்குறிகள் தரப்படாமல் இருந்தால், மேலொட்டுக்களில் செயலியை அமல்படுத்தும் வரிசை முறை கீழிலிருந்து மேலாக (இடது சேர்ப்பு) இல்லாமல் மேலிருந்து கீழாக ( வலது- சேர்ப்பு) அமையும்.[6]

[7] [8] [9]

அதாவது:

இது இலிருந்து வேறுபட்ட ஒன்றாகும்.

Remove ads

குறிப்புகள்

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads