அரைக்குலம்
From Wikipedia, the free encyclopedia
Remove ads
கணிதத்தில் அரைக்குலம் (Semigroup) என்பது ஓர் இயற்கணித அமைப்பாகும். ஒரு கணமும் சேர்ப்புப் பண்பு கொண்ட ஓர் ஈருறுப்புச் செயலியும் சேர்ந்து ஒரு அரைக்குலமாக அமையும். ஆனால் ஒரு கணம், குலமாக அமைய சேர்ப்புப் பண்புடன் சேர்த்து அந்த ஈருறுப்புச் செயலியின் முற்றொருமை உறுப்பும் மற்றும் கணத்திலுள்ள ஒவ்வொரு உறுப்பிற்கும் நேர்மாறு உறுப்பும் அக்கணத்தில் இருக்க வேண்டும்.
ஓர் அரைக்குலத்தின் ஈருறுப்புச் செயலியானது பெரும்பாலும் பெருக்கல் குறியீட்டால் குறிக்கப்படுகிறது. , அல்லது சுருக்கமாக , என்பது வரிசைச் சோடி யை அரைக்குலத்தின் ஈருறுப்புச் செயலிக்குட்படுத்துவதைக் குறிக்கும்.[1][2][3]
அரைக்குலத்தின் ஈருறுப்புச் செயலி சேர்ப்புப் பண்புடையதாக இருக்கும் என்பதால் அரைக்குலத்தின் கணத்திலுள்ள அனைத்து x, y மற்றும் z உறுப்புகளுக்கும்
என்பது மெய்யாகும்.
ஆனால் ஒரு அரைக்குலத்தின் ஈருறுப்புச் செயலியானது பரிமாற்றுப் பண்பு கொண்டிருக்க வேண்டிய அவசியமில்லை என்பதால் பொதுவாக,
அரைக்குலத்தின் வரையறைப்படி அது ஒரு சேர்ப்புக் குலமன் ஆகும். ஈருறுப்புச் செயலிக்குரிய முற்றொருமை உறுப்பும் அரைக்குலத்தில் இருக்குமேயானால் அந்த அரைக்குலம் அலகுள்ள அரைக்குலம் அல்லது ஒற்றைக்குலம் என அழைக்கப்படும்
Remove ads
வரையறை
ஒரு கணம் , ஈருறுப்புச் செயலி "" உடன் சேர்ந்து பின்வரும் அடிக்கோள்களை நிறைவு செய்யுமானால் அக்கணம் ஒரு அரைக்குலம் எனப்படும்.
அடைவுப் பண்பு: S ல் உள்ள அனைத்து a, b க்கும் a · bன் மதிப்பும் Sன் ஒரு உறுப்பாக இருக்கும்.
சேர்ப்புப் பண்பு: S அனைத்து a, b மற்றும் cக்கும் (a · b) · c = a · (b · c) .
அதாவது கணிதக் குறியீட்டில்,
- மற்றும்
- .
சுருக்கமாக அரைக்குலமென்பது ஒரு சேர்ப்புக் குலமன் ஆகும்.
Remove ads
எடுத்துக்காட்டுகள்
- இயல் எண்களின் கணம் கூட்டல் செயலியுடன் சேர்ந்து ஒரு அரைக்குலமாகும்.
ஏனெனில்.
- எந்த இரு இயல் எண்களின் கூட்டுத்தொகையும் ஒரு இயல் எண் ஆகும்.
- கூட்டல் செயலுக்குச் சேர்ப்புப் பண்பு உண்டு.
அதாவது,
(x + y) + z = x + (y + z), இங்கு x,y,z இயல் எண்கள்
- எதிர்மமற்ற உறுப்புகளை உடைய சதுர அணிகளின் கணம் அணிப்பெருக்கல் செயலுடன் ஒரு அரைக்குலமாக அமையும்.
மேற்கோள்கள்
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads