குவாண்டம் இயங்கியல்

From Wikipedia, the free encyclopedia

குவாண்டம் இயங்கியல்
Remove ads

குவாண்டம் புலக்கோட்பாட்டோடு சேர்ந்து குவாண்டம் இயங்கியல் (Quantum Mechanics; இது குவாண்டம் இயற்பியல், குவாண்டம் கோட்பாடு, அலை இயங்கியல் மாதிரி, அல்லது அணி இயங்கியல் என்றும் சில நேரங்களில் அழைக்கப்படும்), என்பது இயற்பியலில் ஓர் அடிப்படைக் கோட்பாடு ஆகும். இது மிகச்சிறிய ஆற்றல் மட்டங்களில் உள்ள அணுக்கள் மற்றும் அணுவடித்துகள்களின் இயல்பை விவரிக்கும் கோட்பாடு ஆகும்.[2]

Thumb
ஹைட்ரஜன் அணுவிலுள்ள எதிர்மின்னியின் வெவ்வேறு ஆற்றல் மட்ட நிலைகளின் அலைச்சார்புகள். குவாண்டம் இயங்கியலால் வெளியில் ஒரு துகளின் துல்லியமான இடத்தைக் கண்டறிய முடியாது. அத்துகளை வெவ்வேறு இடங்களில் கண்டறியக்கூடிய நிகழ்தகவை மட்டுமே கண்டறிய முடியும்.[1] வெளிச்சமான பகுதிகள் எதிர்மின்னியைக் கண்டறிய அதிக நிகழ்தகவு உள்ள இடங்களைக் குறிக்கிறது.

மரபார்ந்த இயற்பியல் (குவாண்டம் இயங்கியலுக்கு முன் இருந்த இயற்பியல்) என்பது இயற்கையில் சாதாரணமான அளவில் (கண்ணில் காணக்கூடிய அளவில்) இருப்பவற்றை விவரிக்கும் அடிப்படைக் கோட்பாடுகளைக் கொண்ட துறை ஆகும். குவாண்டம் இயங்கியலைக் கொண்டு நாம் மரபார்ந்த இயற்பியலிலுள்ள நிறைய கோட்பாடுகளை பெரிய அளவில் நடக்கத்தகு கோட்பாடுகளாக தோராயமாக வரையறுக்க முடியும்.[3] குவாண்டம் இயங்கியல் மரபார்ந்த இயற்பியலிலிருந்து பின்வரும் அம்சங்களில் வேறுபடுகிறது, அவையாவன: ஆற்றல், உந்தம் போன்ற ஓர் அமைப்பின் அளவுகள் தனிநிலை மதிப்பு வரம்புகளுக்கு உட்பட்டவையாகும் (குவாண்டமாக்கல்), பொருட்கள் துகள் பண்பையும் அலைப் பண்பையும் ஒருங்கே பெற்றவை (அலை-துகள் இருமை), மற்றும் ஒரு குறிப்பிட்ட அளவு துல்லியத்துடன் மட்டுமே நம்மால் அளவுகளை அறிந்து கொள்ள முடியும் (நிலையில்லாக் கோட்பாடு.[note 1]

குவாண்டம் என்ற சொல் ஒரு இலத்தீன் மொழிச் சொல்லாகும். அதன் பொருள் எவ்வளவு என்ற கேள்வியாகும். இக்காலத்தில் இச்சொல் பொட்டலம் என்ற பொருளிலேயே பயன்படுத்தப்படுகிறது. குவாண்டம் பொறிமுறையின்படி, இயற்கையின் அடிப்படைக் கூறுகள் தொடர்ந்து பிரிக்கக்கூடியவை அல்ல. உதாரணமாக, ஒளி அலை எனக் கருதப்பட்டாலும் அது ஒரு குறிப்பிட்ட அளவுக்குக் கீழ் பிரிக்கப்பட முடியாதது ஆகும். இது போலவே இடமும் காலமும் கூட ஒரு அளவுக்கு மேல் சிறியதாக்கப்பட முடியாது என்பது குவாண்டம் பொறிமுறையின் துணிபு ஆகும். குவாண்டம் இயற்பியல் நியூட்டனின் இயற்பியலுடன் அடிப்படையிலேயே வேறுபடுகின்றது. நியூட்டனின் இயற்பியலில் நாம் இயற்கையின் போக்கை மாற்றாமல் அதனை ஆராய முடியும் எனக் கருதப்பட்டது. ஆனால் ஹைஸன்பர்க், இந்நூற்றாண்டின் தொடக்கத்தில், இக்கருத்து தவறு என நிறுவினார். நாம் இயற்கையின் ஒரு பகுதியைக் கவனிக்கும் செயலே (the act of observation) அதன் போக்கை மாற்றும் என அவர் நிறுவினார்.

இதனால் நியூட்டனின் இயற்பியலில் இருந்து வந்த பிரபஞ்சத்திலிருந்து முழுக்க விலகிய நோக்கு (entirely objective view of the universe) எனும் கோட்பாடு நீங்கியது. அளவீடு என்பது ஒதுக்கப்பட முடியாத ஒரு பகுதியானது. மேலும், ஒரு எலெக்ட்ரானின் இடத்தை நிர்ணயிக்கச் செய்யப்படும் ஒரு அளவீட்டினால் அதன் திசைவேகம் மாறிப்போகும் என்பதால் அதன் இடத்தையும், திசைவேகத்தையும் (சரியாகச் சொன்னால் அதன் இடத்தையும், அதன் உந்தத்தையும் (momentum)) ஒரே நேரத்தில் மிகச்சரியாக நிர்ணயிக்க முடியாது என்று அறிவித்தார் அவர். இது இன்னாளில் ஹைஸன்பர்க்கின் ஐயப்பாட்டுக் கொள்கை என அழைக்கப்படுகிறது. இது குவாண்டம் இயற்பியலின் ஓர் அடிப்படைக் கோட்பாடாகும். இதனால் இயற்கையின் நிலையையோ போக்கையோ மனிதன் முழுமையாக அறிந்து கொள்ள முடியும் என்ற (லேப்லேசு போன்றவர்கள் கொண்டிருந்த) கொள்கை வீழ்ந்தது.

இந்த வெர்னர் ஐசன்பர்க் ஐயப்பாட்டு கொள்கைகளை இரண்டு விதமாக புரிந்து கொள்ளலாம். உதாரணமாக ஒரு எலக்ட்ரானின் இடத்தையும் உந்தலையும் மிகத்துல்லியமாக 'அளக்க' முடியாது என்று நினைக்கலாம். அதாவது ஒரு குறிப்பிட்ட எலக்ட்ரான் குறிப்பிட்ட சமயத்தில்எந்த இடத்தில் இருகிறது, அதன் உந்தல் என்ன என்பதை நாம் அளக்க முடியாது. ஆனால் எலக்ட்ரானுக்கு உந்தமும் இடமும் இயற்கையில் மிகத்துல்லியமாக இருக்கின்றன. நமக்குத்தான் அளக்க முடியாது. ஐன்ஸ்டைன் இந்தக் கொள்கையையே ஆதரித்தார். நீல்ஸ் போர் என்பவர் இன்னொரு விதமாக விளக்கினார். அதன் படி, எலக்ட்ரானுக்கு (அல்லது எந்தப்பொருளுக்கும்) இடமும் உந்தலும் ஒரே சமயத்தில் மிகத்துல்லியமாக ‘கிடையாது'. நம்மால் அளக்க முடியுமா அல்லது முடியாதா என்பதை விட, எலக்ட்ரானுக்கு ஒரு இடமும் உந்தலும் ‘ஏறக்குறையத்தான்' இருக்கும். தற்போது ஐன்ஸ்டைனின் வாதத்தை விஞ்ஞானிகள் ஏற்றுக்கொள்ளவில்லை. நீல்ஸ் போரின் விளக்கமே பெரும்பாலும் ஏற்கப்பட்டு இருக்கின்றது. இரு தரப்புமே விவாதிக்கப்படுகின்றது.

Remove ads

வரலாறு

குவண்டம் விசையியலின் (Quantum Mechanics ) பிறப்பு என்பது 17 மற்றும் 18 ஆம் நூற்றாண்டுகளில் ஆரம்பிக்கிறது . அது, ராபர்ட் ஹூக் (Robert Hooke), கிறிஸ்டியன் ஹைஜன்ஸ் (Christian Hygens) மற்றும் லியோனர்ட் ஆய்லர் (Leonard Euler) ஆகிய அறிஞர்கள் ஒளியின் அலைக்கொள்கையை (Wave theory of light) வெளியிட்டதிலிருந்து தொடங்குகிறது. 1803 ல், புகழ் பெற்ற அறிஞர் தாமஸ் யங்க் (Thomas Young), இரட்டை பிளவு ஆய்வினைச் (Double Slit Experiment) செய்து, அதனை "ஒளி மற்றும் வண்ணங்களின் நிலை (On the nature of light and colour)" என்ற ஆய்வுக் கட்டுரையை வெளியிட்டார். இந்த ஆய்வு, ஒளியின் அலைக் கொள்கையை ஏற்றுக் கொள்வதற்கு, மிக முக்கிய பங்கு வகிக்கிறது.

கருப்புப் பெட்டக கதிரியக்கம் அல்லது கருப்பொருள் கதிரியக்கம் (Black Body Radiation) என்ற நிகழ்வை விளக்க, பல அறிஞர்கள் முயன்றனர். சோதனையை அடிப்படையாகப் பெறப்பட்ட ஆய்வு (Experimental results ) முடிவுகளை கோட்பாடு சார்ந்த ஆய்வுகளால் (Theoretical results) விளக்க முடியாமல் இருந்தது. Raleigh Jeans என்ற விஞ்ஞானி அலைக்கொள்கையைப் பயன்படுத்தி உருவாக்கப்பட்ட தனது Theoretical results-ஐ வெளியிட்டார். இந்த ஆய்வானது, குறைந்த அலை எண்கள் (Frequency ) உள்ள ஒளி ஆற்றல் அளவினை மிகச்சரியாகக் கணித்தது. ஆயினும், அதிக அலை எண்கள் (Frequency ) உள்ள ஒளி ஆற்றல் அளவினை இந்த ஆய்வினால் விளக்க முடியவில்லை (இதுதான் ultraviolet catastrophe என அழைக்கப்படுகிறது).

பின்னர், மேக்ஸ் பிளாங்க் (Max Plank) என்ற ஆய்வாளர், ஒளியினை போட்டான் (photon) எனப்படும் துகள்களாகக் கருதியதன் மூலம், இந்தக் குறைபட்டினைப் போக்க முடிந்தது. இவரின் இந்த ஆய்வே, குவாண்டம் இயற்பியல்/விசையியலிற்கு வழிவகுத்தது. இதுவே Quantum Mechanics-ற்கு தோற்றத்திற்கு வழிவகுத்தது. எனவே, இந்த ஆய்வு சமர்ப்பிக்கப்பட்ட நாளினை, Quantum Mechanics-ன் பிறந்த நாள் என்றுகூட அழைக்கலாம்.

இருபதாம் நூற்றாண்டின் துவக்க காலத்தில் தோன்றிய ஓர் இயற்பியல் துறையாகும். துகள் சித்தாந்ததின் தோற்றத்திற்கு முன்னர், பெருவாரியான திட, திரவ மற்றும் வாயுப் பொருட்களின் இயக்கங்கள் நியூட்டன், லாக்ராஞ்சி, போல்ட்ஸ்மான், மாக்சுவல் மற்றும் பலரது கோட்பாடுகளினடிப்படையில் புரிந்து கொள்ளப்பட்டது. ஆனால், அறிவியல் அறிவுப் பெருகியபோது, பெரும்பொருட்களிலிருந்து சிறிய துகள்கள் மற்றும் மூலக்கூறுகளை நோக்கி மெல்ல இயற்பியல் நகர ஆரம்பித்தது. ஏற்கனவே பெரும்பொருட்களின் இயக்கங்களுக்கான நியூட்டன் விதிகள் போன்றவற்றைக் கொண்டு இச்சிறு துகள்களின் இயக்கத்தையோ அல்லது ஆற்றலையோ விளக்க முடியாமல் போனது. இப்படி அணுக்கள் மற்றும் அதனுள் அடிப்படைத் துகள்கள் போன்றவற்றின் இயக்கங்களையும், ஆற்றலையும் விளக்கிய ஒரு துறையே குவாண்டம் இயற்பியல் இச்சித்தாந்தத்தின் அடிப்படையில், புறவழுத்தத்திற்குட்படும் ஒரு துகளின் ஆற்றல் தொடர் எண்மதிப்பைக் கொண்டிராமல், ஆற்றல் பிந்துக்களாகக் இருக்கும் என கண்டுபிடிக்கப்பட்டது. எனவே இத்துறையை குவாண்டம் இயற்பியல் என்றும் வழங்குவர்.

Remove ads

குவாண்டம் கோட்பாடும் சார்புக் கோட்பாடும்

சார்புக் கோட்பாட்டில் துளைத்தல் என்பதற்கு விளக்கம் கிடையாது. ஆனால் குவாண்டம் கோட்பாடு இதை துளைத்தல் என்று தனித்து அழைக்கிறது. நுண்ணலைகளை ஒரு அலை கடத்தி மூலம் செலுத்தினால் அக்கடத்தியின் விட்டம் நுண்ணலையின் அலைநீளத்திலும் குறைவாக இருக்கும் எனில் அந்த அலைகள் கடத்தியை தாண்டி வரக்கூடாது. ஆனால் அதே அலை குவாண்டம் கோட்பாட்டின் படி கசிவுகளாக வெளிவரும். ஆனால் இந்த துளைத்தல் முறையை நிறுவிய ஆய்வு முறை தவறானது என்றும் கூறுகின்றனர்.

Remove ads

குவாண்டம் கோட்பாடு பிறப்பின் கால அட்டவணை [5]

மேலதிகத் தகவல்கள் காலம், நிகழ்வுகள் ...

குறிப்புகள்

  1. N.B. on precision: If and are the precisions of position and momentum obtained in an individual measurement and , their standard deviations in an ensemble of individual measurements on similarly prepared systems, then "There are, in principle, no restrictions on the precisions of individual measurements and , but the standard deviations will always satisfy ".[4]
Remove ads

மேற்கோள்கள்

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads