எதிர்மின்னி
From Wikipedia, the free encyclopedia
Remove ads
எதிர்மின்னி அல்லது எலெக்ட்ரான் (electron) என்பது அணுக்களின் உள்ளே உள்ள மிக நுண்ணிய ஒர் அடிப்படைத் துகள். நாம் காணும் திண்ம, நீர்ம, வளிமப் பொருள்கள் எல்லாம் அணுக்களால் ஆனவை. ஒவ்வோர் அணுவின் நடுவேயும் ஓர் அணுக்கருவும், அந்த அணுக்கருவைச் சுற்றி பல்வேறு சுற்றுப் பாதைகளை மிக நுண்ணிய எதிர்மின்மத் தன்மை உடைய சிறு துகள்களான எதிர்மின்னிகளும் சுழன்று வருவதை அறிவியல் அறிஞர்கள் கண்டுள்ளனர். அணுக்கருவின் உள்ளே நேர்மின்மத் தன்மை உடைய நேர்மின்னிகளும் (புரோத்தன்கள், protons), மின்மத் தன்மை ஏதும் இல்லாத நொதுமின்னிகளும் (நியூத்திரன்கள், neutrons) இருக்கும். ஓரணுக் கருவில் உள்ள ஒவ்வொரு நேர்மின்னிக்கும் இணையாக ஓர் எதிர்மின்னி அணுக்கருவில் இருந்து சற்று விலகி ஏதேனும் ஒரு சுற்றுப்பாதையில் சுழன்றுகொண்டு இருக்கும்.

எதிர்மின்னி என்பதின் ஆங்கிலச் சொல்லாகிய electron என்பது 1894 ஆம் ஆண்டில் இருந்து வழக்கில் உள்ளது. இச்சொல், 1544-1603 ஆம் ஆண்டுகளில் வாழ்ந்த, இங்கிலாந்தின் அரசியாரின் மருத்தவரான, வில்லியம் கில்பெர்ட் (William Gilbert) என்பார் ஆண்ட electric force என்னும் சொல்லிலிருந்து பெறப்பெற்றது. இலத்திரன் எனும் சொல் கிரேக்க மொழியில் உள்ள ήλεκτρον (elektron) (கிரேக்கச் சொல் எலெக்ட்ரான் என்பது பொன் நிறத்தில் உள்ள ஒளி ஊடுருவும் அம்பர் (amber) என்னும் பொருளைக் குறிப்பது. இது காலத்தால் கல் போல் ஆகிவிட்ட மரப்பிசின் ஆகும். அம்பர் என்பதைத் தமிழில் ஓர்க்கோலை, பொன்னம்பர், பூவம்பர், மீனம்பர், தீயின்வயிரம், செம்மீன் வயிரம், மலக்கனம், கற்பூரமணி என்னும் பல சொற்களால் குறிக்கப்படுகின்றது ).
அறிவியல் முறைகளில் எதிர்மின்னியைக் கண்டுபிடித்தவர் ஆங்கில அறிவியல் அறிஞர் ஜெ. ஜெ. தாம்சன் என்பார். 1897-ஆம் ஆண்டு ஏப்ரல் 30 அன்று ராயல் கழகத்தில் அவர் அளித்த உரையில் தன் கண்டுபிடிப்பை வெளிப்படுத்தினார்.[6]
ஒவ்வொரு எதிர்மின்னியும் 9.1x10−31 கிலோ கிராம் எடை உள்ளது. அதன் மின்மம் (மின் ஏற்பு) 1.6x10−19 கூலம். இவ் எதிர்மின்னிகள்தாம் பெரும்பாலான மின்னோட்டதிற்கும் அடிப்படை. வெளிச் சுற்றுப் பாதையில் உள்ள எதிர்மின்னிகள் வேதியியல் வினைகளில் மிக அடிப்படையான முறைகளில் பங்கு கொள்கின்றன.
Remove ads
பண்புகள்
எலக்ட்ரானின் எதிர் துகள் பாசிட்ரான் என அழைக்கப்படுகிறது.அது எலக்ட்ரானை ஒத்த பண்புடைய, ஆனால் நேர்மின்னூட்டதை கொண்ட துகள்கள் ஆகும்.ஒரு பாஸிட்ரான் மற்றும் ஒரு எலக்ட்ரான் மோதும் போது காமா கதிரியக்கம் உருவாகிறது. எலக்ட்ரான்கள் லெப்டான் குடும்பத்தை சேர்ந்த முதல் தலைமுறை துகளாகும். மின் ஈர்ப்பு,மின்காந்த மற்றும் பலவிதமான பரிமாற்ற பண்புகளை கொண்டது. எலக்ட்ரான்கள் அனைத்து தனிமங்களின் மின்சாரம்,காந்த விசை மற்றும் வெப்ப கடத்தி பண்புகளில் முக்கிய காரணமாக உள்ளது.எலக்ட்ரான்கள் ஒரு அணுவின் மொத்த நிறையில் 0.06% க்கு குறைவாக இருப்பினும் அதன் பண்புகள் எலக்ட்ரான்களின் எண்ணிக்கையைச் சார்ந்தே இருக்கின்றன. இரண்டு அல்லது அதற்கு மேற்பட்ட அணுக்கள் இடையே எலக்ட்ரான்கள் பரிமாற்றம் அல்லது பகிர்வு இரசாயன பிணைப்பு உருவாக முக்கிய காரணியாக இருக்கிறது. வளிமண்டலத்தில் நுழையும் அண்டக்கதிர்கள் மூலமோ அல்லது கதிரியக்க ஓரிடத்தான்களின் பீட்டா சிதைவு மற்றும் உயர் ஆற்றல் மோதல்கள்போது எலக்ட்ரான்கள் உருவாக்கபடுகிறது.மேலும் பாசிட்ரான்கள் கொண்டு நிர்மூலமாக்கும் போது எலக்ட்ரான்கள் அழிக்கப்படலாம் மற்றும் நட்சத்திரங்களின் அணுக்கரு உருவாக்கத்தின் போது உறிஞ்சப்படுகிறது மேலும் சிறப்பு தொலைநோக்கிகள் மூலம் விண்வெளியில் உள்ள எலக்ட்ரான் பிளாஸ்மாகளை கண்டறிய முடியும்
Remove ads
பயன்கள்
எலக்ட்ரான்கள் பற்றவைப்பு,எதிர்மின் கதிர் குழாய்கள் , எலக்ட்ரான் நுண் கதிரியக்க சிகிச்சை , ஒளிக்கதிர்கள் , வாயு அயனியக்கம்,துகள் துரிதமாக்குதல்,மின்னணுவியல் உள்ளிட்ட பல பயன்பாடுகளை கொண்டிருக்கின்றன.
பிளாஸ்மா பயன்பாடுகள்
துகள் கதிர்வீச்சு
எலக்ட்ரான் கதிர்வீச்சுகள் உலோகபற்றவைப்புக்கு பயன்படுத்தப்படுகின்றன.இதன் உயர் ஆற்றல் அடர்த்தி குறுகிய பகுதியில் குவிக்கப்படும் போது எரிவாயு தேவை இல்லாத உலோகபற்றவைப்பை நிகழ்த்த இயலும்.எலக்ட்ரான்களை ஒரு வெற்றிடத்தில் தான் முடுக்கப்படும் செய்ய முடியும்.
எலக்ட்ரான் - கற்றை குறைகடத்தி தயாரித்தல்(EBL)
ஒரு மைக்ரான் விட சிறிய இணைப்புகளை குறைக்கடத்திகளில் பொறிக்க பயன்படும் ஒரு முறை ஆகும்.இந்த தொழில் நுட்பத்தை அதிக செலவுகள் மற்றும் மெதுவாக செயல்திறன் கொண்ட இம்முறையானது வெற்றிடத்தில் செயல்பட வேண்டும்.இந்த காரணத்திற்காக , EBL சிறு எண்ணிக்கையிலான சிறப்பு ஒருங்கிணைந்த சுற்றுகளை உற்பத்தி செய்யப் பயன்படுத்தப்படுகிறது.
கிருமி நீக்கம்
மருத்துவ மற்றும் உணவு பொருட்களை அதன் வெப்பநிலையில் மாறுபாடு இன்றி தூய்மையாக்கும் பொருட்டு எலக்ட்ரான் தீவிர கதிரியக்கம் பயன்படுத்தப்படுகிறது.
கதிர்வீச்சு சிகிச்சை
கதிரியக்க சிகிச்சையில் நேரியல் துகள் துரிதமாக்குதல் மூலம் உடலில் உள்ள மேலோட்டமான கட்டிகள் நீக்கப்படுகிறது.இவை ஒரு குறிப்பிட்ட ஆழம் ஊடுருவி செல் கார்சினோமாஸ் போன்ற தோல் புண்களுக்கு சிகிச்சையளிக்க பயன்படுகின்றன.
காட்சியாக்கல்
குறைந்த ஆற்றல் எலக்ட்ரான் சிதறல் (LEED) எலக்ட்ரான்களின் ஒரு கற்றை ஒரு படிக பொருளின் கட்டமைப்பை தீர்மானிக்கபயன்படுகிறது.இதற்குப் பயன்படும் எலக்ட்ரான்கள் தேவையான ஆற்றல் வீச்சு பொதுவாக 20-200 eV ஆக உள்ளது. உயர் ஆற்றல் பிரதிபலிப்பு எலக்ட்ரான் சிதறல் (RHEED) நுட்பம் படிக பொருட்கள் மேற்பரப்பு குணாதிசயத்தை அறிய பயன்படுத்துபடுகிறது. இதற்கான ஆற்றல் வீச்சு பொதுவாக 8-20 keV மற்றும் படுகோணம் 1-4 டிகிரி ஆக உள்ளது. எலக்ட்ரான் நுண்ணோக்கியில் எலக்ட்ரான்கள் அவற்றின் இயக்கம் திசை, கோணம் மற்றும் ஆற்றல் கற்றை பொருள் தொடர்பு பண்புகள் மூலம் பொருள் அணுவியல் அளவுகளில் தீர்க்கப்பட எலக்ட்ரான் கற்றை படங்களை தயாரிக்க முடியும். எலக்ட்ரான் நுண்நோக்கியில் 2 முக்கிய வகைகள் உள்ளன: அவை பரிமாற்றம் மற்றும் ஸ்கேனிங். பரிமாற்ற எலக்ட்ரான் நுண்நோக்கி ஒரு பொருள் துண்டு வழியாக எலக்ட்ரான்கள் ஒரு கற்றைகளை கொண்டு சென்று அதன் மறுபுறம் அதன் அமைப்பு ஓர் உணர்வி முஉளம் உணரப்படுகின்றது. ஸ்கேனிங் எலக்ட்ரான் நுண்நோக்கி ஒரு முப்பரிமாண படத்தை தயாரிக்கலாம் இதன் உருபெருக்கும் திறன் 100 × இருந்து 1,000,000 × அல்லது அதற்கு மேற்பட்டதாக உள்ளது.
பிற பயன்பாடுகள்
கட்டற்ற எலக்ட்ரான் லேசர் கற்றை எதிரெதிர் திசைகளில் உள்ள இருதுருவ காந்த வரிசைகள் கொண்ட ஒரு ஜோடி செழுத்திவழியாக செல்கிறது.இவை கதிரியக்க துறையில் கடுமையாக அதிர்வெண்பெருக்கத்தை உருவாகப்பயன்படுகின்றது.வை எக்ஸ் கதிர் உருவாக்கத்திலும் முக்கிய பங்கு வகிக்கிறது.
Remove ads
மேற்கோள்கள்
குறிப்புகள்
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads