குவியம் (வடிவவியல்)

From Wikipedia, the free encyclopedia

குவியம் (வடிவவியல்)
Remove ads

வடிவவியலில் குவியம் (foci) என்பது ஒரு சிறப்புவகைப் புள்ளி. இப்புள்ளியைக் கொண்டு பலவகையான வளைவரைகள் வரையறுக்கப்படுகின்றன. எடுத்துக்காட்டாக, கூம்பு வெட்டுகளான வட்டம், பரவளைவு, நீள்வட்டம், அதிபரவளைவு ஆகிய வளைவரைகள் குவியத்தினைக் கொண்டு வரையறுக்கப்படுகின்றன. மேலும் கசினி முட்டைவடிவவளைவரை (Cassini oval) மற்றும் கார்ட்டீசியன் முட்டைவடிவவளைவரை (Cartesian oval) இரண்டும் குவியத்தைப் பயன்படுத்தி வரையறுக்கப்படுகின்றன.

Thumb
புள்ளி F, சிவப்பு நீள்வட்டம், பச்சை பரவளைவு, நீல அதிபரவளைவு ஆகியவற்றின் குவியம்.
Remove ads

வீழ்ப்பு வடிவவியலின் கூம்பு வெட்டுகள்

இரு குவியங்கள் மூலம் வரையறுக்கப்படும் கூம்பு வெட்டுகள்

  • நீள்வட்டம்

இரண்டு நிலையான புள்ளிகளிலிருந்து அதன் தூரங்களின் கூட்டுத்தொகை எப்பொழுதும் ஒரே மாறிலியாக இருக்கும்படி இயங்கும் புள்ளியின் இயங்குவரையாக நீள்வட்டம் வரையறுக்கப்படுகிறது. இந்த இரண்டு நிலையான புள்ளிகளும் நீள்வட்டத்தின் குவியங்களாகும்.

  • வட்டம்

நீள்வட்டத்தின் ஒரு சிறப்புவகை வட்டம். வட்டத்திற்கு இரு குவியங்களும் ஒன்றி, ஒற்றைக் குவியமாக இருக்கும். எனவே வட்டம், ஒரு நிலையான புள்ளியிலிருந்து (ஒற்றைக் குவியம்) எப்பொழுதும் சமதூரத்தில் உள்ளவாறு நகரும் புள்ளியின் இயங்குவரையாக வரையறுக்கப்படுகிறது.

அப்பொலோனியஸ் வட்டம், இரு குவியங்கள் கொண்டு வரையறுக்கப்படுகிறது. தரப்பட்ட இரு குவியங்களிலிருந்து உள்ள தூரங்களின் விகிதம் ஒரே மாறிலியாகக் கொண்ட புள்ளிகளின் கணம் அப்பொலோனியஸ் வட்டமாகும்.

  • பரவளைவு

பரவளைவு நீள்வட்டத்தின் ஒரு எல்லைவகை. நீள்வட்டத்தின் இரு குவியங்களில் ஒன்று முடிவிலியில் அமைந்தால் அது பரவளைவாக மாறும்.

  • அதிபரவளைவு

இரண்டு நிலையான புள்ளிகளிலிருந்து அதன் தூரங்களின் வித்தியாசத்தின் தனிமதிப்பு எப்பொழுதும் ஒரே மாறிலியாக இருக்கும்படி இயங்கும் புள்ளியின் இயங்குவரையாக அதிபரவளைவு வரையறுக்கப்படுகிறது. இந்த இரண்டு நிலையான புள்ளிகளும் அதிபரவளைவின் குவியங்களாகும்.

கூம்பு வெட்டுகளைக் குவியம், இயக்குவரை கொண்டு வரையறுத்தல்

கூம்பு வெட்டை ஒரு குவியம் மற்றும் ஒரு இயக்குவரை (கோடு) கொண்டும் வரையறுக்கலாம். இயக்குவரைக் கோட்டின் மீது குவியம் அமையாது.

குவியத்திலிருந்து உள்ள தூரத்தை இயக்குவரையிலிருந்து உள்ள தூரத்தால் வகுக்கக் கிடைப்பது எப்பொழுதும் ஒரு நேர் மாறிலியாக உள்ளவாறு இயங்கும் புள்ளியின் இயங்குவரையாகக் கூம்பு வெட்டு வரையறுக்கப்படுகிறது. இந்த மாறிலி கூம்பு வெட்டின் வட்டவிலகல் என அழைக்கப்படும். இதன் குறியீடு e.

வட்டவிலகலின் வெவ்வேறு மதிப்புகளுக்கு ஏற்பக் கூம்பு வெட்டு வட்டம், அதிபரவளைவு, நீள்வட்டம், அதிபரவளைவு எனக் கீழ்க்கண்டவாறு அமையும்:

மேலதிகத் தகவல்கள் வட்டவிலகல் e, கூம்புவெட்டு வகை ...

வட்டத்திற்கு இயக்குவரை முடிவிலியில் அமையும் ஒரு கோடாக இருக்கும்.

குவியம் மற்றும் இயக்குவட்டம் மூலம் கூம்பு வெட்டுகளை வரையறுத்தல்

கூம்பு வெட்டுகளை ஒரு குவியம் மற்றும் ஒரு வட்டமான இயக்குவரை (இயக்குவட்டம்) கொண்டும் வரையறுக்கலாம். கூம்பு வெட்டுகள், குவியத்திலிருந்தும் இயக்கு வட்டத்திலிருந்தும் சமதூரத்தில் உள்ளவாறு இயங்கும் புள்ளிகளின் இயங்குவரைகள் ஆகும்.

நீள்வட்டத்தின் குவியத்திற்கும் இயக்கு வட்டத்தின் மையத்திற்கும் முடிவுறு அச்சுதூரங்கள் உண்டு. இயக்கு வட்டத்தின் ஆரம், இயக்குவட்ட மையத்திற்கும் குவியத்திற்கும் இடைப்பட்ட தூரத்தை விட அதிகமாக இருக்கும். எனவே குவியம் இயக்கு வட்டத்தினுள் அமையும். நீள்வட்டத்தின் மற்றொரு குவியம் இயக்கு வட்டத்தின் மையமாக இருக்கும். இதனால் நீள்வட்டமானது முழுவதுமாக இயக்கு வட்டத்தினுள் அமையும்.

நீள்வட்டத்தின் ஒரு குவியம் முடிவிலியில் அமைந்தால் கிடைக்கும் வளைவரையாகப் பரவளைவு உள்ளதால் அதன் இயக்குவரையின் மையம் முடிவிலியில் அமையும் புள்ளியாக இருக்கும். எனவே பரவளைவிற்கு இயக்கு வட்டம் பூச்சிய வளைவுடைய வளைவரையாகும்.

அதிபரவளைவிற்கு இயக்கு வட்டத்தின் ஆரம், இயக்கு வட்ட மையத்திற்கும் குவியத்திற்கும் இடைப்பட்ட தூரத்தை விடச் சிறியது. எனவே அதிபரவளைவின் குவியம் இயக்கு வட்டத்திற்கு வெளியே அமையும்.

Remove ads

கார்ட்டீசியன் மற்றும் காசினி முட்டைவடிவ வளைவரைகள்

கார்ட்டீசியன் முட்டைவடிவ வளைவரை, தரப்பட்ட இரு குவியங்களில் இருந்து காணப்படும் தூரங்களின் நிறையிட்ட கூடுதல் (weighted sum) மாறிலியாக உள்ள புள்ளிகளின் கணம்.

காசினி முட்டைவடிவ வளைவரை, தரப்பட்ட இரு குவியங்களில் இருந்து காணப்படும் தூரங்களின் பெருக்குத் தொகை மாறிலியாக உள்ள புள்ளிகளின் கணம்.

மேற்கோள்கள்

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads