சமகோண இணையியம்

From Wikipedia, the free encyclopedia

சமகோண இணையியம்
Remove ads

வடிவவியலில் முக்கோணம் ABC ஐப் பொறுத்து புள்ளி P இன் சமகோண இணையியம் (isogonal conjugate) என்பது A, B, and C கோணங்களின் இருசமவெட்டிகளில் PA, PB, and PC கோடுகளின் எதிரொளிப்புக் கோடுகள் சந்திக்கும் புள்ளியாகும். முக்கோணத்தின் பக்கங்களின் மீதமையாத புள்ளிகளுக்கு மட்டுமே சமகோண இணையியங்கள் உண்டு.

Thumb
P இன் சமகோண இணையியம்.

புள்ளி P இன் சமகோண இணையியத்தின் குறியீடு P* ஆகும். P* இன் சமகோண இணையியம் P.

முக்கோணத்தில், உள்வட்ட மையத்தின் (I) சமகோண இணையியம் உள்வட்ட மையம் I ஆகவும், செங்கோட்டு மையம் H இன் சமகோண இணையியம் சுற்றுவட்ட மையம் O ஆகவும், இடைக்கோட்டுச் சந்தி G இன் சமகோண இணையியம் சமச்சரிவு இடைக்கோட்டுச் சந்தி K ஆகவும் இருக்கும். மேலும் பெர்மா புள்ளிகளின் சமகோண இணையியங்கள் சமவிசைசார் புள்ளிகளாகவும், பிரகார்டு புள்ளிகள் ஒன்றுக்கொன்று சமகோண இணையியங்களாகவும் அமைகின்றன.

முந்நேரியல் X = x : y : z கொண்ட ஒரு முக்கோணத்தின் எந்தவொரு பக்கத்தின் மீதும் அமையாத ஒரு புள்ளியின் முந்நேரியல் ஆயதொலைகள் X = x : y : z எனில் அப்புள்ளியின் சமகோண இணையியமாக அமையும் புள்ளியின் முந்நேரியல் ஆயதொலைகள் 1/x : 1/y : 1/z.

இதனால் தான் சிலசமயங்களில் X இன் சமகோண இணையியம் X 1 எனக் குறிக்கப்படுகிறது.

முக்கோண மையங்களின் கணம் S, கீழே வரையறுக்கப்பட்டுள்ள முந்நேரியல் பெருக்கத்தின் கீழ் ஒரு பரிமாற்றுக் குலம் ஆகும்.

(p : q : r) * (u : v : w) = pu : qv : rw,

S இலுள்ள ஒவ்வொரு X இன் நேர்மாறு உறுப்பு X 1.

சமகோண இணையியமானது ஒரு சார்பு என்பதால் கோடுகள், வட்டங்கள் போன்ற புள்ளிகளின் கணங்களுக்கும் சமகோண இணையியங்கள் உள்ளன. எடுத்துக்காட்டாக, ஒரு கோட்டின் சமகோண இணையியம் ஒரு சுற்று கூம்புவெட்டு ஆகும். குறிப்பாக, முக்கோணத்தின் சுற்று வட்டத்தைக் கோடானது 0, 1, 2 புள்ளிகளில் வெட்டுமானால் அதன் சமகோண இணையியம் முறையே நீள்வட்டம், பரவளையம், அதிபரவளையம் என அமையும். சுற்றுவட்டத்தின் சமகோண அமைவியம் முடிவிலியில் அமைந்த கோடாக இருக்கும். தமக்குத் தாமே சமகோண இணையியங்களாக உள்ள பல கனவடிவங்கள் உள்ளன. அதாவது, அத்தகைய வடிவங்களின் மீதமையும் புள்ளி X இன் X 1 ம் அந்த வடிவின் மீதே அமையும்

Remove ads

வெளியிணைப்புகள்

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads